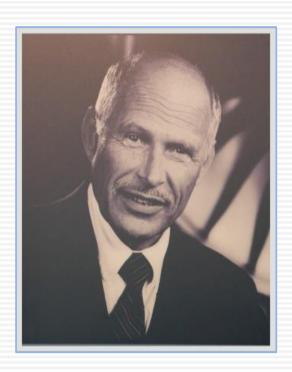

MUSEUMSFÜHRER

Vom Stationär-Motor zum Turbofan-Triebwerk

Eine Entdeckungsreise durch die Industriegeschichte der Motorenfabrik Oberursel im Werksmuseum von Rolls-Royce Deutschland

Willkommen im Werksmuseum Motorenfabrik Oberursel


Anhand von größtenteils Original-Objekten wird über die lange und interessante Geschichte dieses historischen Industriestandorts und der hier gefertigten Produkte informiert.

Weitere Informationen auf unserer Webseite www.gkmo.net Viel Vergnügen!

Das Werksmuseums Motorenfabrik Oberursel ist im im **Günter-Kappler-Haus**

am Werksstandort Oberursel von Rolls-Royce Deutschland beheimatet.

Prof. Dr. **Günter Kappler** gehört zu den Wegbereitern und zu den Gründungsgeschäftsführern des 1990 gegründeten Unternehmens BMW Rolls-Royce AeroEngines, aus dem im Jahr 2000 Rolls-Royce Deutschland hervorging.

Er leitete von 1990 bis 1999 die Entwicklung des ersten in Deutschland in Serie gebauten zivilen Luftfahrt-Turbinentriebwerks.

In aller Kürze - Die Geschichte der Motorenfabrik Oberursel

Die 1892 gegründete Motorenfabrik Oberursel, seit dem Jahr 2000 ein Standort von Rolls-Royce Deutschland, gilt als die älteste noch aktive Flugmotorenfabrik der Welt. Sie geht zurück auf eine 1882 aufgebaute Fabrik für Müllereimaschinen, die seinerzeit erste Maschinenbaufabrik in Oberursel. Groß geworden mit den Stationärmotoren "Gnom", entwickelte sie sich Anfang des 20ten Jahrhunderts zum zweitgrößten Hersteller für Motorlokomotiven in Deutschland. Mit den während des Ersten Weltkriegs

gebauten Oberurseler Umlaufmotoren wurden die ersten deutschen Jagdflugzeuge ausgerüstet, die mit dem Fokker-Dreidecker des "Roten Barons" in Erinnerung geblieben sind. Zwischen 1922 und 1932 wurden hier fast 20.000 Diesel-Zweitakt-Motoren Deutzer Bauart produziert. Von 1934 bis Ende des Zweiten Weltkriegs wurden hier insgesamt etwa 60.000 wassergekühlte, schnelllaufende 4-Takt Deutz-Dieselmotoren gefertigt. Mit diesen Motoren wurden u.a. die Trecker der Firma Deutz und auch anderer Traktorenhersteller ausgerüstet.

Daneben arbeitete man ab **1941** an der Entwicklung von Groß-Flugmotoren. Nach dem **Zweiten Weltkrieg** wurde die Fabrik ein Opfer der Reparationsdemontage, und die US-Army nutzte dieses Werk elf Jahre lang als Instandsetzungsdepot. Anfang der **1960er** Jahre zog wieder der Flugmotorenbau mit verschiedenen Lizenzfertigungen und Eigenentwicklungen in der Fabrik ein. Auch die Instandhaltung dieser Triebwerke gehört seitdem zu den Aufgaben am Standort.

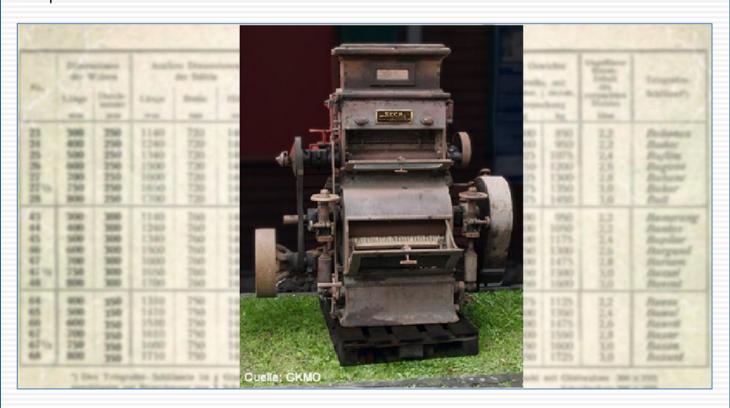
1990 begann mit der Firma BMW Rolls-Royce Aero-Engines und der Entwicklung der BR700 Schubtriebwerke für Regionalflugzeuge und Geschäftsreiseflugzeuge eine neue Ära. Nach dem Übergang in die Firma Rolls-Royce Deutschland entwickelte sich das Werk zum Kompetenzzentrum für rotierende Triebwerksbauteile, insbesondere für Verdichtertrommeln, für Verdichterräder in BLISK-Bauweise und für Turbinenscheiben.

Ein Walzenstuhl – Er bringt 1882 den industriellen Maschinenbau nach Oberursel

Was hat ein Walzenstuhl mit der Motorenfabrik Oberursel zu tun? Ganz viel, denn ohne die Walzenstühle des Wilhelm Seck - keine Motorenfabrik Oberursel! Wilhelm Seck hatte 1882 die Wiemersmühle erworben und zu einer Maschinenbaufabrik ausgebaut, um hier vor Allem solche neuzeitlichen Walzenstühle zu produzieren. Walzenstühle haben im letzten Drittel des 19. Jahrhunderts die bis dahin üblichen Mahlgänge ersetzt - statt zwischen Mahlsteinen wurden darin die Getreidekörner rationeller zwischen rotierenden Walzen aufgebrochen und zu Griesen und Mehlen zerrieben. Hier, in der Oberurseler Zweigniederlassung der Bockenheimer Mühlenbauanstalt, konnte Sohn Willy Seck die Entwicklung seines Stationärmotors GNOM vollenden. Und das führte im Januar 1892 zur Gründung der bis heute bestehenden Motorenfabrik Oberursel.

Technische Daten

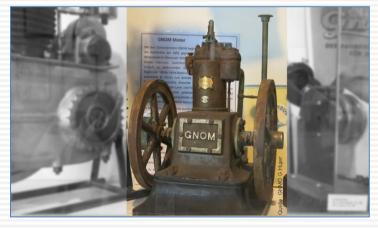
Typ: Zweiwalzenstuhl, Modell M


Hersteller: Dresdener Mühlenbauanstalt Ge-

brüder Seck

Baujahr: 1917
Serien-Nr.: 17477
Gewicht: ca. 1000 kg
Aufstellfläche: ca. 70 x 70 cm
Anzahl Walzen: 2 Hartguss-Walzen

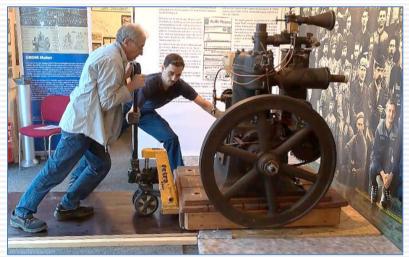
Einen Walzenstuhl aus dem 19. Jahrhundert konnten wir nicht auftreiben, aber einen direkten Nachfahren. Das 2014 erworbene Exponat kann repräsentativ an die Entstehungsgeschichte der Motorenfabrik Oberursel erinnern. Nach der Restaurierung wollen wir diesen Walzenstuhl im Außenbereich des Museums präsentieren.

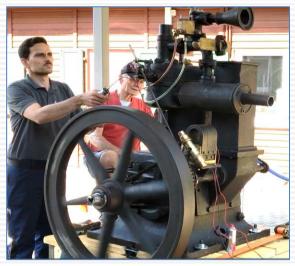

<u>Der Stationärmotor GNOM – Die Gründung der Motorenfabrik Oberursel 1892</u>

Die Geschichte der Motorenfabrik Oberursel beginnt mit dem Stationärmotor GNOM, den Willy Seck ab **1890** in der Fabrik seines Vaters in Oberursel entwickelt hat. Die Bezeichnung dieses robusten, zuverlässigen und einfach zu bedienenden einzylindrigen Stationärmotors war abgeleitet von der Fabelgestalt "Gnom". Solche Motoren dienten anfangs vor Allem zum Antrieb von Maschinen in Gewerbe und Handwerk sowie in der Land- und Forstwirtschaft.

Der vor allem in der Landwirtschaft und beim Kleingewerbe beliebte Motor verkaufte sich gut. **1896** hatte man bereits 1000 Gnom-Motoren produziert, ebenso die ersten "Lokomobile", und bald folgten von GNOM-Motoren angetriebene Schiffswinden. **1898** verließ der Konstrukteur des GNOMs das Unternehmen, als es in die MOTORENFABRIK OBERURSEL ACTIENGE-SELLSCHAFT umgewandelt wurde.


Im Jahr 1900 begann die Entwicklung und Produktion von Motorlokomotiven, die als Gruben-, Rangier-, Werk-, Feldbahn- und Heeresfeldbahnlokomotiven breite Verwendung fanden. Bis 1922 wurden etwa 2.000 Stück gebaut, was die MO zum zweitgrößten Motorlokomotiven-Hersteller in Deutschland machte. Mit den immer neuen Produkten und dem wachsenden Geschäft wurden auch die Fabrikbauten immer wieder erweitert. 1911 wurde mit dem Bau eines neuen Fabrikkomplexes begonnen, die "Dieselmotorenhalle" wurde 1912 in Betrieb genommen und 1913 folgte die "Flugmotorenhalle". Bis 1918 entstanden weitere Hallentrakte und das eindrucksvolle Verwaltungsgebäude. Dieses Gebäudeensemble, das bis heute das Bild der Motorenfabrik prägt, wurde 1980 zum Kulturdenkmal erklärt.


Das hier ausgestellte Modell eines Stationärmotor GNOM wurde vermutlich für Verkaufsaktivitäten verwendet.



Der Stationärmotor GNOM im Museum

Insgesamt wurde mehrere tausend Stück dieses Typs gebaut, nur wenige sind erhalten geblieben. Der hier ausgestellte 1200 kg schwere Spiritus-Motor - Leistung ca. 6 bis 7 PS - mit der Seriennummer 4184 wurde 1906 hier gebaut und an eine Getreidemühle in Ineu (Königreich Ungarn, seit 1920 Rumänien) geliefert. Dort hat der Motor bis etwa 1970 seinen Dienst verrichtet. Ein ungarischer Motorensammler konnte den Motor vor der Verschrottung retten, 2012 kam der historische Motor an seinen Herstellungsort zurück.

Vereinsmitglieder haben den Motor lauffähig restauriert, der zweite "Erstlauf" fand im Juni 2022 statt.

Technische Daten:

<u>Bauart:</u> Vielstoff-Verbrennungsmotor | 1 Zylinder, stehend angeordnet

Kraftstoff: Petroleum, Solaröl, Diesel, Spiritus, Gas, u.ä.

Leistung: ca. 6 bis 7 PS (4,5 bis 5,2 kW) | Hubraum: ca. 5,7 Liter

Drehzahl: 300 pro Minute | Masse: 1200 kg

Baujahr: 1906 | 2022 zweiter "Erstlauf nach Grundüberholung"

Die Oberurseler Motorlokomotiven

Im Jahr 1900 nahm die Motorenfabrik den Bau von Motorlokomotiven auf, die sich bald einen bedeutenden Namen bei den Tunnelbauprojekten in den österreichischen Alpen machen konnten. Auch als Gruben-, Rangier-, Werk- und Feldbahnlokomotiven fanden sie breite Verwendung. Allein im Ersten Weltkrieg wurden etwa siebenhundert Heeresfeldbahnlokomotiven produziert. Mit insgesamt etwa zweitausend bis 1922 gebauten Exemplaren stieg die Motorenfabrik zum zweitgrößten Hersteller in Deutschland auf, nach der Gasmotorenfabrik Deutz.

Anfangs waren viele dieser Lokomotiven mit Spiritusmotoren ausgestattet, bei deren Einführung die Motorenfabrik Oberursel ab **1899** eine Vorreiterrolle in Deutschland eingenommen hatte.

Das Werksmuseum kann nur mit dem Modell einer Oberurseler Grubenlokomotive aufwarten. Zwei betriebsfähige - von vier überhaupt noch bekannten Oberurseler Motorlokomotiven- können im Frankfurter Feldbahnmuseum oder in Neuseeland besichtigt werden.

Das Modell einer "Oberurseler Grubenlocomotive" in einer Museums-Vitrine

Transport-Lore

Die ab **1900** in der Motorenfabrik Oberursel gebauten Motorlokomotiven kamen auf der ganzen Welt zum Einsatz, aber auch im eigenen Fabrikbereich. Auf einem damals das ganze Werk durchziehenden Schienennetz wurden solche Loren für den innerbetrieblichen Transport benutzt.

Bei Bauarbeiten auf dem Werksgelände in den **1990**er Jahren wurde eine dieser Loren gefunden und von Mitarbeitern des Eisenbahnmuseum Kranichstein restauriert.

Sie steht jetzt im Aussenbereich des Museums


1914 bis 1918 - Oberurseler Flugmotoren im Ersten Weltkrieg

Im April 1913 konnte die Motorenfabrik Oberursel die Lizenz zum Nachbau und zur Vermarktung der

erfolgreichen französischen Gnome-Umlaufmotoren von der Société des Moteurs Gnome der Gebrüder Seguin in Frankreich erwerben. Bei einem der Brüder handelt es sich um jenen Seguin, der den Aufschwung seiner 1895 gegründeten Firma dem Bau der von Seck lizensierten Gnom-Motoren zu verdanken hatte. Die rasante Entwicklung der Militärfliegerei während des Ersten Weltkriegs führte zu einem tiefgreifenden Wandel in der Motorenfabrik Oberursel. Bis Ende 1918 wurden etwa dreitausend "Oberurseler Umlaufmotoren" produziert, bei denen es sich um Weiterentwicklungen der französischen Gnome-Motoren handelte. Am bekanntesten wurde der Neunzylinder-

Motor UR-II im Fokker Dreidecker Dr I. Mit diesem Dreidecker errang Manfred Freiherr von Richthofen, der erfolgreichste deutsche Jagdflieger im Ersten Weltkrieg, 19 seiner insgesamt 80 Luftsiege, bis er

selbst am 21. April 1918 an der Somme abgeschossen wurde. Zusätzlich zu den etwa dreitausend neu gebauten Motoren wurde eine wohl noch größere Anzahl im Werk überholt. Annähernd fünftausend Soldaten besuchten die im Werk eingerichtete Motorenschule, wo sie in einem jeweils vierwöchigen Lehrgang in den Betrieb und die Instandsetzung der Oberurseler Flugmotoren eingewiesen wurden. Ein 1918 neu entwickelter Achtzylinder-V-Motor U IV mit 220 PS kam nicht mehr zur Serienfertigung.

Der Siebenzylinder Oberurseler Umlaufmotor Typ U 0

Der Umlaufmotor Gnome wurde ab 1908 in Frankreich von den Gebrüdern Seguin entwickelt. Bei einem

Umlaufmotor dreht sich das Motorgehäuse samt Zylindern um eine feststehende Kurbelwelle, der Propeller ist an dem umlaufenden Motorgehäuse befestigt. Vor allem wegen seines geringen Gewichts und der Laufruhe war dieser Motorentyp seinerzeit bei den Flugzeugkonstrukteuren sehr beliebt. Die französische Société des Moteurs Gnome vergab mehrere Lizenzen, in Deutschland im Jahr 1913 an die Motorenfabrik Oberursel AG. Diese brachte zunächst den Siebenzylindermotor mit 80 PS heraus, der bei dem sehr interessierten Militär als Oberurseler Umlaufmotor die Bezeichnung U 0 erhielt.

Der hier ausgestellte, funktionsfähige 7-Zylindermotor wurde von unseren Auszubildenden unter Leitung von Erich Auersch restauriert und in das nachgebaute Prüflaufgestell einge-

Technische Daten:MotorOberursel U 0
7-Zylinder-UmlaufmotorHubraum8,3 LiterLeistung80 PSEigengewicht94 kgBaujahr1914 oder 1915Restaurierung2011 bis 2013

baut. Der Erstlauf erfolgte zum Jubiläum "100 Jahre Flugmotorenbau in Oberursel" im August 2013.

Der Umlaufmotor Typ UR III

Der 11-Zylindermotor UR III war eine eigenständige Oberurseler Entwicklung, in Frankreich nahm man einen vergleichbaren Motor erst Ende 1918 in Angriff. Nach dem erfolgversprechenden Einsatz des

Neunzylindermotors UR II im neuen Fokker Dreidecker Dr I nahm die Motorenfabrik im August 1917 die Entwicklung auch einer 11-Zylinder-Version dieses Motors mit 160 PS Nennleistung auf. Dieser Motor mit der Typenbezeichnung UR III sollte den später in D VIII umbenannten Eindecker E V antreiben, das letzte von Fokker noch in nennenswerter Zahl gebaute Flugzeug. Bei dem Vergleichsfliegen in Berlin-Adlershof erhielt die D VIII-Variante 28 den Umlaufmotor

Oberursel UR III (145 PS) bzw. Goebel Goe III (160 PS). Diese Variante mit dem Umlaufmotor konnte durch den geringen Luftwiderstand die Leistungen der schnellsten alliierten Jäger erreichen. Es kamen jedoch lediglich noch 85 dieser Eindecker an die Front, ob darunter auch welche mit dem neuen Oberurseler UR III-Motor waren, ist ungewiss.

Bei dem Exponat im Museum handelt es sich um einen unter Lizenz der Motorenfabrik Oberursel als "St 160" im österreichischen Steyr hergestellten Motor (Leihgabe des Technischen Museums Wien).

Fokker Dreidecker Dr I als Modell - Das Flugzeug des legendären "Roten Baron"

Im Laufe des **Ersten Weltkriegs** brachte Anthony Fokker in seinen Schweriner Flugzeugwerken eine Vielzahl verschiedener Aufklärungs- und Jagdflugzeuge heraus, darunter das überhaupt erste deutsche Jagdflugzeug, die Fokker E I mit einem starr eingebauten Maschinengewehr. Wie die meisten Fokker Flugzeuge, wurde es von einem Oberurseler Umlaufmotor angetrieben.

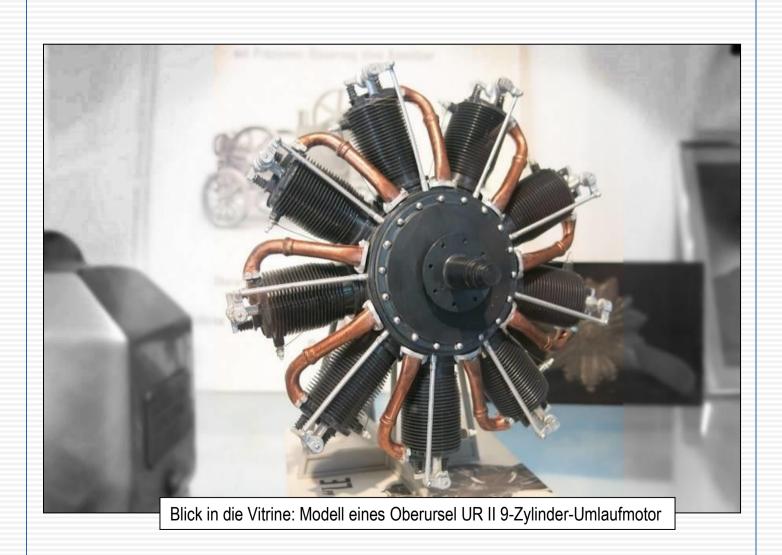
Legendär geworden ist der im Spätsommer 1917 erstmals an die Front gekommene Fokker Dreidecker Dr I,
der von einem Oberurseler Umlaufmotor UR II angetrieben war, durch Freiherr Manfred von Richthofen. Dieser
erfolgreichste Jagdflieger des Ersten Weltkriegs errang
19 seiner 80 Luftsiege in solchen ganz oder teilweise rot
gestrichenen Fokker-Dreideckern, was ihm im Nachhinein die Bezeichnung der "Rote Baron" einbrachte.

Von 322 gebauten Fokker Dr I ist keine erhalten geblieben. Neben einigen flugfähigen Nachbauten können in zahlreichen Museen 1:1 Nachbauten besichtigt werden. In unserem Werksmuseum erinnert ein kleines Modell an die erfolgreiche Produktion von etwa. 3000 Oberurseler Umlaufmotoren während des Ersten Weltkriegs.

Technische Daten: (Original Flugzeug)	
Länge	5,75 m
Spannweite (Oben)	7,20 m
Höhe	2,95 m
Nutzlast	203 kg
Abfluggewicht	585 kg
Höchstgeschwindigkeit	160 km/h in 2800 m
Steiggeschwindigkeit auf 1000 m Höhe	2 min 54 sek.
maximale Flughöhe	6500 m
Flugdauer	1h 30 min
Motor	Neunzylinder Oberursel Umlaufmotor UR II
Bewaffnung	2 MG 08/15

Modell des Umlaufmotors Typ UR II - Antrieb des legendären Fokker Dreideckers Dr I

Technische Daten:


Motor Oberursel UR II

9-Zylinder-

Umlaufmotor

Hubraum 15,1 Liter Leistung 110 PS Eigengewicht 147 kg

MOTORENFABRIK OBERURSEL OBERURSEL DEI FRANKFORTEN

Der Oberurseler Gnom - Ein Fahrrad-Einbaumotor für Jedermann

Aus der Not heraus – das Hauptgeschäft mit Flugmotoren und Feldbahnlokomotiven war weggebrochen und die anderen Vorkriegsprodukte waren technisch veraltet – musste die Motorenfabrik Oberursel neue Produkte entwickeln. Mit einem **ab 1919** entwickelten Fahrradmotor erhoffte man sich Erfolge.

Für die Konstruktion dieses winzigen Viertakt-Einzylindermotors zeichnete Oberingenieur Eduard Freise verantwortlich, der zuvor die Flugmotorenkonstruktion ge-

Technische Daten "Oberurseler Gnom"

Typ: Fahrrad-Einbaumotor Modell 39 Einzylinder-Viertaktmotor

Hersteller: Motorenfabrik Oberursel AG

Baujahr: 1921

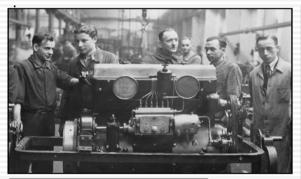
Leistung: 1 PS bei 2500 U/min

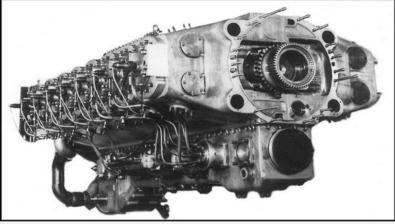
Hubraum: 63 cm³

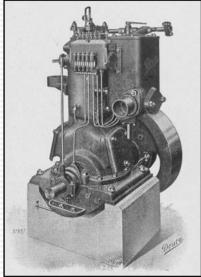
Verbrauch: ca. 0,9 Liter Benzin pro Stunde

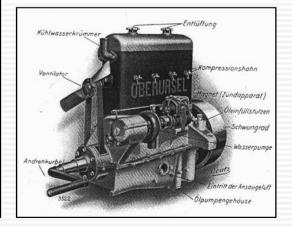
Gewicht: 8 kg Stückzahl: Unbekannt

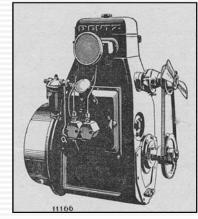
leitet hatte. Anfang **1921** kam der "*Oberurseler Gnom, der Fahrradeinbaumotor für Jedermann"* auf den Markt, als "*der einfachste, beste und sparsamste Einbaumotor passend für jedes Fahrrad"*. Der Motor sollte auch "*dem weniger bemittelten Mann Gelegenheit geben, sich ein Motorrad zu schaffen"*. Die Leistung konnte bald auf 1 PS bei 2.500 Umdrehungen pro Minute gesteigert werden. Damit sollte eine Geschwindigkeit von 30 km/h erreicht werden und Steigungen bis 10 % glatt überwunden werden. Der 30. Oktober **1921** wurde zum Triumph für den kleinen Gnom, als die davon angetriebenen Fahrräder den 1. und 2. Platz beim Bergrennen auf den Großen Feldberg errangen. Trotz alledem, der wirtschaftliche Erfolg blieb aus, der Motor wurde im Februar **1922** aus dem Programm genommen. Dessen Konstrukteur, Eduard Freise, verließ gleichzeitig die MO und gründete in Oberursel die Columbus Motorenbau AG. Dort wurde der Kleinstmotor unter dem Namen "Columbus" baugleich produziert und verkauft. Freise vollendete hier auch die Entwicklung eines 250 cm³ Viertaktmotor, der in die ersten HOREX-Motorräder eingebaut wurde. So war der kleine Fahrradmotor Gnom quasi der Urvater der Motoren der legendären Horex-Motorräder und lebte darin fort.

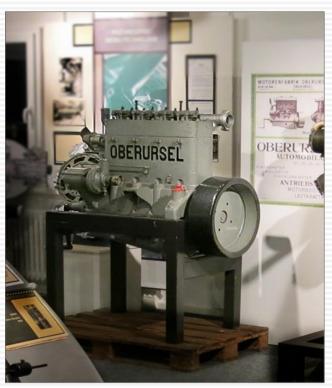

1919 bis 1945 - Die fast vergessenen Motoren


Mit dem Wegfall der Rüstungsaufträge nach dem **Ersten Weltkrieg** stürzte die Motorenfabrik Oberursel AG in eine schwere Krise, es gelang nicht an die früheren Erfolge mit zivilen Produkten anzuknüpfen. Verschiedene Motoren-Neukonstruktionen – darunter auch ein kleiner Fahrrad-Einbaumotor – brachten nicht den erhofften Aufschwung. Nur der **1920/1921** entwickelte Vierzylinder-Reihenmotor Modell 35 war später erfolgreich, er gilt als Urvater der schnelllaufenden Deutzer Fahrzeugmotoren. So zwangen die wirtschaftlichen Probleme die Motorenfabrik Oberursel AG **Ende 1921** in eine Interessengemeinschaft mit der Gasmotorenfabrik Deutz AG in Köln. Ab **1922** wurden hier fast ausschließlich kleinere Diesel-Zweitakt-Motoren Deutzer Bauart produziert.


Nach etwa 20.000 gebauten Motoren wurde die Produktion in Folge der Weltwirtschaftskrise nach Köln verlagert und das Werk in Oberursel wurde Anfang **1932** stillgelegt.


Im Frühjahr **1934** konnte das Werk wieder eröffnet werden. Nun wurden hier wassergekühlte, schnelllaufende 4-Takt Dieselmotoren mit einem, zwei und drei Zylindern produziert, bis zur erneuten Verlagerung **1943** nach Köln insgesamt etwa 60.000 Stück. Mit diesen Motoren wurden vor Allem die Deutzer Trecker und die von verschiedenen anderen Traktorenhersteller ausgerüstet.


Zu den fast in Vergessenheit geratenen Motoren zählen auch die Dz 710-Flugmotoren, die ab **1941** hier in Oberursel entwickelt wurden – doch dazu später mehr.


Der Motor MO Modell 35 - Ein Pionier der LKW-Motorisierung

Von den Motoren, deren Entwicklung nach dem Wegfall der bisherigen Produkte nach dem Ersten Weltkrieg aufgenommen wurde, gehörte der schnelllaufende Vierzylinder-Fahrzeugmotor Modell 35 eindeutig zu den vielversprechendsten!

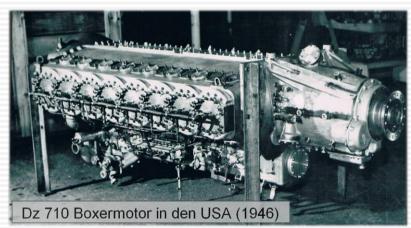
Dieser von Oberingenieur Kurt Thomas entwickelte Viertaktmotor mit einer Leistung von 45 PS bei 1.450 U/min konnte mit Benzol, Benzin, Spiritus oder Petroleum betrieben werden. Die Entwicklung kleinerer Varianten mit 20, 28 oder 35 PS war beabsichtigt. Die Motoren wurden als Antriebskraft für Lastwagen, Boote, Lokomotiven und Traktoren beworben. Die Entwicklung dieses sehr modernen Motors war bereits Ende 1920 soweit fortgeschritten und ausgereift, daß er in Lastkraftwagen der "Deutschen Lastautomobilfabrik AG (DAAG)" eingebaut und erfolgreich erprobt werden konnte.

Von Vorteil war, dass der von der Flugmotorenfertigung her vorhandene Maschinenpark für die Produktion des Modells 35 gut geeignet war. Allerdings konnte dieser noch am Anfang seiner Markteinführung stehende Motor den wirtschaftlichen Niedergang der Motorenfabrik nicht aufhalten. Er überlebte jedoch als einziges Produkt die Einbringung der Motorenfabrik Oberursel AG in die Interessengemeinschaft mit der Gasmotorenfabrik Deutz AG Ende 1921. Dieser hier entwickelte Motortyp, zwischenzeitlich umbenannt in LM 116, sollte über weitere Zwischenschritte zum Urvater der schnelllaufenden Deutzer Aggregate- und Fahrzeugmotoren werden. Insgesamt wurden 200 dieser Motoren in Oberursel gebaut, von denen nur sehr wenige erhalten blieben.

Eines der seltenen Exemplare, der hier ausgestellte Motor, ist eine Schenkung der DEUTZ AG und des Fördervereins Freunde der Motorensammlung DEUTZ anlässlich des 125-jährigen Gründungsjubiläums der Motorenfabrik Oberursel im Jahr **2017**.

Technische Daten Fahrzeug Motor Modell 35 (LM116) Тур: Vierzylinder 4-Takt Ottomotor Hersteller: Motorenfabrik Oberursel AG 1922 Baujahr: 45 PS Leistung: 4 500 cm³ Hubraum: Gewicht: 525 kg Stückzahl: ca. 200 Stück (Modell 35 und LM)

Motor Modell 35 (LM116) im Werksmuseum und als Generatorantrieb im alten Wasserwerk in Hattersheim



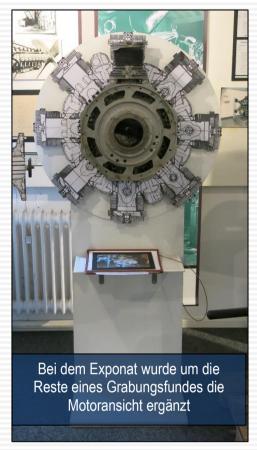
<u>1941 bis 1945 - Das Flugmotoren-Entwicklungszentrum der KHD AG</u>

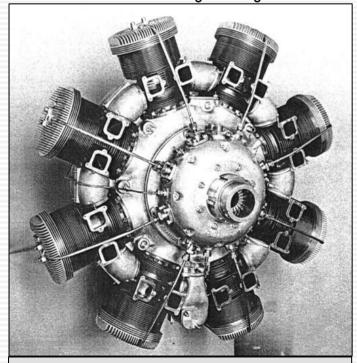
1941 verlagerte die Klöckner-Humboldt-Deutz AG ihre **1935** in Köln aufgenommene Flugmotorenentwicklung in ihr Werk nach Oberursel. Die gesamte Fabrik wurde umfassend modernisiert und zu einem modernen Flugmotoren-Entwicklungszentrum ausgebaut. Hervorzuheben sind die verschiedensten Prüfanlagen und Gebäude für die Motorenerprobungen und das umfangreiche Werkstofflabor.

Bis März **1945** wurde hier an der Konstruktion und Erprobung von Zweitakt-Boxer-Motoren gearbeitet, zunächst für Benzin- und später für Dieselbetrieb. Dabei wurden zahlreiche Ein- und Zwei-Zylindermotoren für Grundlagenuntersuchungen, aber auch 12-Zylinder-Boxermotoren gebaut und erprobt. Auch zwei 16-Zylinder Dz 710 Vollmotoren wurden fertiggestellt und auf dem Turmprüfstand getestet. Bis März **1945** wurden etwa 150 Laufstunden erreicht und dabei eine Leistung von 2360 PS nachgewiesen.

Nach Besetzung des Werks Ende März **1945** requirierte die US-Army diese beiden Dz 710-Versuchsmotoren und schaffte sie in die USA zu Vergleichsuntersuchungen. Die Dz 710-Motoren waren längst nicht serienreif, eine Weiterentwicklung erfolgte nicht mehr. Der Bedarf an Groß-Flugmotoren hatte sich drastisch reduziert, und die aufkommende Technologie der Strahltriebwerke hatte ein höheres Leistungspotential. Die beiden in die USA verbrachten Versuchsmotoren gelten als verschollen.

<Dz 700 Flugmotor


1944 - Flugmotor Dz 710 auf dem Prüfstand in Oberursel



Der Flugmotor Dz 700 – Ein Sternmotor für leichte Flugzeuge

1935 wurde im Entwicklungsbereich der damaligen Humboldt-Deutzmotoren AG (ab 1938: KHD AG) in Köln eine Flugmotorengruppe eingerichtet, deren Leitung Mitte 1936 Dr. Adolf Schnürle übertragen wurde. Zunächst konzentrierten sich die Arbeiten auf einen 8-Zylinder Sternmotor mit der Bezeichnung Dz 700, der als Antrieb für ein militärisches Schulungsflugzeug vorgesehen war. In dem Bestreben, den Motor billiger und betriebssicherer zu machen, wurde 1938 auch ein 6-Zylinder Versuchsmotor gebaut. **1939** wurden die Entwicklungsarbeiten an den Dz 700 Motoren eingestellt, ohne daß es zu einer Flugerprobung oder Vorserienfertigung gekommen war. Wichtiger waren jetzt die leistungsstärkeren Boxermotoren mit der Bezeichnung Dz 710. Mit dem Umzug der Flugmotoren-Entwicklung von Köln waren 1941 auch die entwickelten Sternmotoren Dz 700 nach Oberursel gekommen und hier noch auf dem Prüfstand gefahren worden. Zumindest einer dieser funktionsfähigen 8-Zylindermotoren kam nach dem Krieg unter nicht ganz geklärten Umständen in die USA, wo er 1964 bei einem Schrotthändler in Missouri auftauchte. Der Motor gelangte 1968 in ein Privatmuseum in den USA und von dort später an einen Sammler in Deutschland.

Das Exponat zeigt Bauteile des 8-Zylindermotors, die **1996** bei Bauarbeiten auf dem Werksgelände gefunden wurden.

Die Entwicklung bei KHD hatte 1935 mit diesen Achtzylinder Sternmotoren Dz 700 begonnen

Technische Beschreibung

Deutzdieselflugmotor DZ 700

Luftgelühlter Zwei-Takt-Sternmotor Erste Ausführung (1937)

8-Zylinder-Sternmotor

(80 mm Ø, 100 mm Hub) Hubraum 4 Ltr.

Zweite Ausführung (1938/39)

6-Zylinder-Sternmotor

(90 mm Ø, 100 mm Hub) Hubraum 3,8 Ltr.

Dauerleistung 90 PS

Kurzleistung 105 PS bei n = 2500 U/min.

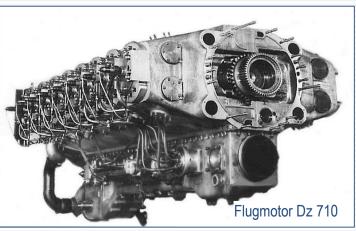
Diese Leistung war gefordert.

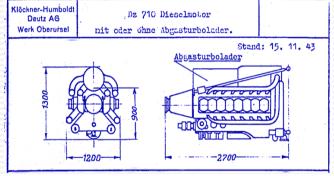
Mögliche Kurzleistung 160 PS bei n = 2700 U/min.

Motor war für Schulflugzeuge bestimmt und hatte keine Aufladung.

Spülung durch mechanisch angetriebenes Schleudergebläse. Direkte Einspritzung. Schnürle-Umkehrspülung.

Die Motoren waren weitgehend erprobt und entwickelt, wurden aber 1940 zu Gunsten des größeren Motors DZ 710 aufgegeben.


Dz 710 – Ein 16-Zylinder-Großflugmotor


Flugmotoren mit mehr als 2000 PS Leistung wurden für geplante Großtransporter wie die Ju 90 und schwere Bomber wie die He177 benötigt. Die 1935 in Köln aufgenommenen Flugmotoren-Aktivitäten wurden **1941** in das KHD-Werk in Oberursel verlagert, wo die Entwicklung von Groß-Flugmotoren mit mehr als 2000 PS unter der Leitung von Dr. Schnürle weitergeführt wurde. Dies führte zu dem 16-Zylinder-Boxermotor Dz 710. Zwei dieser Dz 710 Versuchsmotoren wurden fertiggestellt und auf dem Turmprüfstand getestet. Bis März 1945 wurden etwa 150 Laufstunden erreicht, wobei eine Leistung von 2360 PS nachgewiesen wurde.

Nach Besetzung des Werks Ende März 1945 requirierte die US-Army diese beiden Dz 710-Versuchsmotoren und schaffte sie in die USA zu Vergleichsuntersuchungen. Die Dz 710-Motoren waren längst nicht serienreif, eine Weiterentwicklung erfolgte nicht mehr. Der Bedarf an Groß-Flugmotoren hatte sich drastisch reduziert, und die aufkommende Technologie der Strahltriebwerke hatte ein höheres Leistungspotential. Die beiden in die USA verbrachten Versuchsmotoren gelten als verschollen.

Das ausgestellte vollmaßstäbliche Modell soll die Dimensionen des Motors sowie das Funktionsprinzip des Zweitakt-Dieselmotors zeigen.

Technische Daten

16-Zylinder Zwei-Takt liegender V-Motor (mit einem Zylinderwinkel von 180°), mit Diesel-Direkteinspritzung, Schnürle-Umkehrspülung, Abgasturbolader, Flüssigkeitskühlung und Spülgebläse

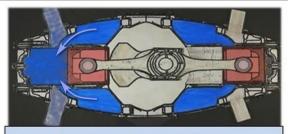
Zylinderzahl: 16

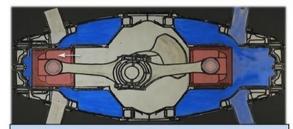
Bohrung / Hub: 160 mm / 160 mm Hubraum je Zylinder: 3,22 Liter

Hubraum je Zylinder: 3,22 Liter
Hubraum gesamt: 51,5 Liter
Verdichtungsverhältnis: 15
Zylinderabstand: 200 mm
Startleistung ohne Abgasturbine: 2300 PS
Startleistung mit Abgasturbine: 2700 PS

Brennstoffverbrauch (Reiseflug): 150 bis 160 g/PS/h

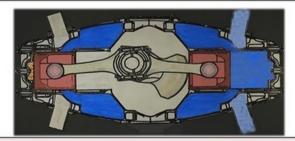
Gewicht ohne Abgasturbine: 1300 kg
Gewicht mit Abgasturbine: 1450 kg
Breite / Höhe / Länge (in cm): 135 / 100 / 240


Stückzahl: 2 komplette Versuchsmotoren, weitere im Aufbau

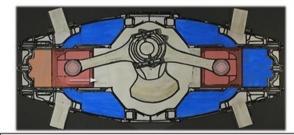

Exkurs: Beschreibung und Funktionsprinzip des Dz 710 Zweitakt-Dieselmotors

Liegender 16-Zylinder-Zweitakt-Boxermotor* mit Schnürle-Umkehrspülung, Diesel-Direkteinspritzung, Abgasturbolader, Flüssigkeitskühlung und Spülgebläse. Die Form des Boxermotors mit der patentierten Zweitakt-Umkehrspülung ermöglicht wegen der fehlenden Ventilsteuerung sehr kurze Abmessungen von Zylinderkopf zu Zylinderkopf und einen guten gegenseitigen Ausgleich der Gas- und Massenkräfte, da die Kolben- und Pleuelmassen an jedem Hubende durch die Verdichtung beziehungsweise die Verbrennung aufgefangen werden. Der liegende Boxermotor ermöglicht gleiche Bedingungen von Kühlung und Schmierung für alle Zylinder, alle Einspritzdüsen sind gut zugänglich. Die beiden Kurbelgehäusehälften enthalten auch die Spülluft-Zuleitungskanäle und ergeben ein dreh- und biegesteifes Gehäuse. Der Zweitaktmotor ist durch das Fehlen der üblichen Steuerungsorgane einfach und kostengünstig herzustellen, er ermöglicht bei verringerter Wartung eine erhöhte Betriebssicherheit.

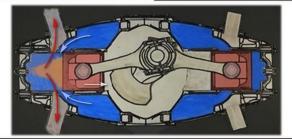
TAKT 1 (Die Erläuterungen beziehen sich auf den linken Zylinder)



Kolben im UT: Zylinder wird mittels Spülgebläse mit Frischluft gefüllt



Kolben bewegt sich Richtung OT: Die Frischluft wird hoch verdichtet


TAKT 2 (Die Erläuterungen beziehen sich auf den linken Zylinder)

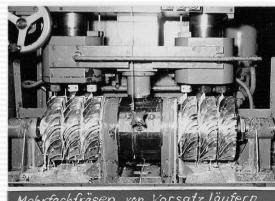
Kolben kurz vor bzw. im OT wird Kraftstoff (Diesel) in den Brennraum eingespritzt, die durch die Verdichtung stark erhitzte Luft entzündet das Gasgemisch, es verbrennt schlagartig.

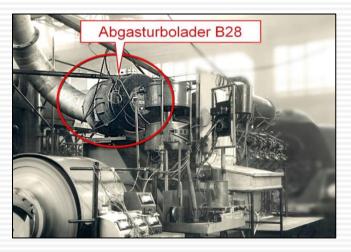
Kolben bewegt sich Richtung UT: Das heiße Gas expandiert und drückt auf den Kolben, das Gas kühlt ab, Wärme wird in mechanische Energie umgewandelt.

"Spülen": Kolben Richtung UT: Abgas strömt über Schlitze aus und wird mittels Spülgebläse von der Frischluft verdrängt.

1945 bis 1958 - Vom Nullpunkt langsam wieder aufwärts

Am 30. März 1945 besetzten US-Truppen die Fabrik und nutzen sie fortan als Kaserne, zur Fahrzeuginstandhaltung und als Fuhrpark für ihre Militärgeheimdienste. Zudem wurden auf Beschluss des Alliierten Kontrollrats sämtliche Maschinen und viele der Einrichtungen zu Reparationszwecken demontiert und abtransportiert. Erst im Frühjahr 1948 konnte in einem kleinen Werksbereich wieder mit einer bescheidenen Bauteilefabrikation begonnen werden die im Jahr darauf in das Turmprüfstandsgebäude umziehen konnte. Hier wurden unter sehr beengten Bedingungen Bauteile für die Kölner und Ulmer Motoren produziert. Aber auch unter diesen erschwerten Bedingungen wurden bereits ab 1951 wieder Lehrlinge ausgebildet.


Mitte 1956 zog die US-Army aus und KHD konnte die Fabrik wieder voll nutzen, theoretisch jedenfalls. Es sollte noch rund zwei Jahre dauern, bis die abgewirtschafteten Gebäude und Anlagen instandgesetzt waren und die Arbeit dort wiederaufgenommen werden konnte. Im November 1958 zog die fünf Jahre zuvor in Köln aufgenommene Entwicklung und Fertigung von Abgasturboladern und Industrie-Kleingasturbinen in das instandgesetzte Oberurseler Werk um. Damit begann die Ära der Strömungsmaschinen und Gasturbinen in Oberursel.

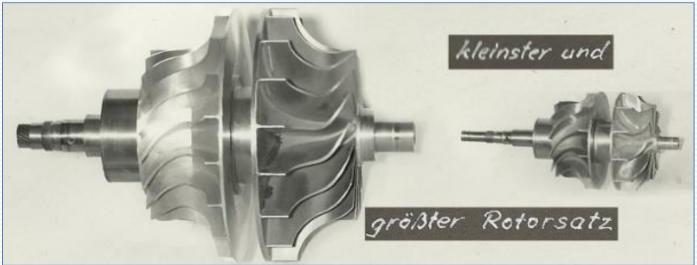


<u>Der Abgasturbolader B28 – Im Vorfeld der Turbinenentwicklung</u>

Mit der in den Abgasen von Verbrennungsmotoren steckenden Energie lassen sich deren Motorleistung und Wirkungsgrade deutlich verbessern. So nahm KHD in den frühen 1950er Jahren die Entwicklung

von Abgasturboladern für ihre Dieselmotoren von 200 bis 800 PS Grundleistung auf. Die dazu in Köln aufgebaute Turbinengruppe – ein Turbolader ist eine Strömungsmaschine mit einem von der Abgasturbine angetriebenen Luftverdichter – wurde 1958 nach Oberursel verlegt, und hier wurde sie zur Keimzelle der neuen Gasturbinenentwicklung und der künftigen Ausrichtung des Standorts.

Von den fünf Leistungsgrößen wurden schließlich nur die Lader B 14 und B 28 produziert, zusammen etwa 150 Stück bis **1971**. Mit dem präsentierten Typ B 28 sollte die Grundleistung eines 800 PS-Zweitaktmotors auf etwa 1 500 PS gesteigert werden.


Technische Daten:

Durchsatz: 1.5 - 3.0 kg/sec

Druckverhältnis: 1,5 – 1,8
Drehzahl: 20 000 / min
Gewicht: 120 kg

Anwendung: Aufladung von Zweitaktmotoren von

500 bis 1500 PS (368 bis 1100 kW)

1958 bis 1990 - Das Gasturbinenwerk der KHD

Mit dem Einzug der Turbinengruppe begann im Werk Oberursel der Klöckner-Humboldt-Deutz AG die Ära der Gasturbinen, mit der Entwicklung, Produktion und Betreuung von Kleingasturbinen für den Industrie-, Fahrzeug- und Luftfahrteinsatz, und von Luftfahrzeug-Antrieben in Lizenz- und Kooperationsprogrammen.

Zunächst wurde die im Stammwerk Köln begonnene Entwicklung der Industriegasturbine T16 in Oberursel fortgesetzt. **1964** begann, anfangs zusammen mit Bristol Siddeley (später zu Rolls Royce), die Entwicklung der Hilfsgasturbine T112 für den Senkrechtstarter VAK 191B. **1966** schloss sich die Entwicklung der T212 als Luftlieferturbine für eine Aufklärungsplattform an, und Ende **1969** begannen die Aktivitäten zu dem Secondary Power System TORNADO, bestehend aus der Hilfsgasturbine T312 und den Geräteträgergetrieben G119. Mitte der **1970** er Jahre folgte die T117, ein kleines Strahltriebwerk zum Antrieb einer Aufklärungsdrohne.

Daneben wurden zahlreiche Projektstudien und Vorentwicklungen zu

Kleingasturbinen durchgeführt, und Oberursel wurde führend auf dem Gebiet der Radialverdichtertechnologie. Auf der Materialseite wurde projektbezogene Werkstoffentwicklung betrieben.

Hilfsgasturbinen für die Luftfahrt

Von den Eigenentwicklungen wurden, nach entsprechenden Vorserien, ab **1963** die Industriegasturbine T216 in Serie produziert, ab **1977** die Geräte des Secondary Power Systems TORNADO und ab **1988** das Strahltriebwerk T117 als Antrieb der Aufklärungsdrohne CL-289.

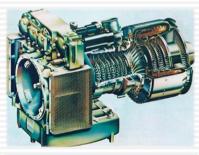
Mit der Lizenzfertigung des Strahltriebwerks Orpheus begann 1959 der Einstieg in die Produktion und Betreuung von Luftfahrtantrieben. 1966 folgte das Hubschrauber-Triebwerk T53, 1971 die Teilefertigung für das Hubschrauber-Triebwerk T64 und dann 1977 die französisch-deutsche Kooperationsfertigung des Turbofan-Triebwerks Larzac. Mit der Produktionsbeteiligung an den CFM 56-Triebwerken gelang 1987 der Einstieg in den zivilen Bereich.

Technische und logistische Betreuung:

Parallel zur Serienfertigung wurde auch die technische und logistische Betreuung der Geräte aufgebaut, einschließlich der Ersatzteilversorgung und der Reparatur und Überholung der Geräte am Standort. Das war nicht nur auf die hier herstellten Geräte beschränkt, sondern umfasst auch "fremde" Triebwerke wie die Rolls-Royce Hubschrauber-Triebwerk GNOME H1400 und GEM.


Fahrzeug- und Industriegasturbinen - Ein Überblick

Klöckner-Humboldt-Deutz, der weltweit älteste Verbrennungsmotorenhersteller, hat sich schon ab 1962 mit Gasturbinen als alternativen Antriebsaggregaten für stationäre Anlagen und für schwere Fahrzeuge befasst. 1964 wurde die erste Pumpenanlage installiert, 1966 begann der Probetrieb einer Turbo-Diesellokomotive und 1967 der ersten Generatoranlage. Ab 1966 befasste man sich mit Fahrzeuggasturbinen, was 1973 in den Einstieg zur Entwicklung der LKW-Fahrzeuggasturbine GT601 mündete. 1977 folgte die Ausrüstung einer Luftkissenfähre mit Industriegasturbinen. An all diesen Programmen waren Oberurseler Entwicklungs- und Kundendienstingenieure und –Monteure beteiligt. 1986 wurde das Geschäftsfeld Industriegasturbinen bei der zur KHD Gruppe gestoßenen Firma MWM zusammengeführt.



Lycoming Gasturbine TF 40

Die Kleingasturbine T216 - Der Einstieg in die Gasturbinentechnologie

Mit dem Einzug der Kölner Gasturbinengruppe begann 1958 das Zeitalter der Gasturbinen in Oberursel. Hier wurde die schon begonnene Entwicklung der anfangs etwa 80 PS leistenden, einfachen und robusten Industriegasturbine T 16 erfolgreich fortgesetzt und führte bald zu der auf 100 PS gesteigerten Version T216. Die Geräte kamen als Antriebseinheit für Pumpen, Verdichter und Generatoren sowie als Schiffsantriebe oder Lehreinheiten für technische Institute zum Einsatz.

Bis Mitte der **1970** er Jahre wurden etwa 500 dieser T16 und T216 Gasturbinen produziert, die letzten Geräte wurden **1990** verkauft.

Technische Daten T216

<u>Bauform</u>: Einwellenturbine mit einstufigem Radialverdichter und einstufiger Radialturbine sowie spiralförmigem Sammler und topfförmiger Gegenstrombrennkammer <u>Leistung</u>: 100 PS (74 kW) bei 50 000 U/min <u>Kraftstoffe</u>: Dieselöl, Heizöl EL, Petroleum, Kerosin, Benzin <u>Kraftstoffverbrauch</u> ca. 63 kg pro Stunde

Abmessungen: Länge 83 cm; Höhe 82 cm; Breite 62 cm

Masse / Trockengewicht: ca. 80 kg

Bild oben:
T216 Tragkraftspritze
im Einsatz bei der
Betriebsfeuerwehr

Bild links:
Das geschnittene
Funktionsmodell im
Werksmuseum

<u>Das Strahltriebwerk Orpheus – Mit einem Lizenzbau in das Luftfahrtgeschäft</u>

1959 begann die Lizenzfertigung von Luftfahrtantrieben mit den Vorarbeiten zum Schubtriebwerk Orpheus der britischen Firma Bristol Siddeley Engines, die **1966** in Rolls-Royce aufging. Das Triebwerk kam im leichten Jagdbomber und Aufklärer-Flugzeug Fiat G-91 R/3 der Bundeswehr zum Einsatz. Bis **1966** wurden insgesamt 358 Orpheus-Triebwerke in Oberursel gebaut.

Die Fiat G-91 blieben bis **1982** bei der Bundeswehr im Einsatz, wobei etwa 600.000 Flugstunden erreicht wurden. Für die Folgeverwendung beim Condor-Flugdienst wurden noch einige Triebwerke in Oberursel instandgesetzt, und mit dem letzten Prüflauf im November **1983** ging schließlich eine Ära in Oberursel zu Ende, nach 3.044 grundüberholten, instandgesetzten oder umgerüsteten Orpheus-Triebwerken.

Technische Daten

Das Orpheus 803 D-11 ist ein axial durchströmtes, einwelliges Strahltriebwerk mit siebenstufigem Axialverdichter, 7 Topfbrennkammern sowie einer einstufigen Axialturbine, das mittels einer Anlasskartusche gestartet wird.

Schub: 22.240 Newton (2.270 kp / 5.000 lbs) Länge ca. 192 cm, Durchmesser ca. 83 cm, Gewicht (trocken) ca. 380 kg

Arbeitskleidung / Overall

Heutzutage ist es üblich, dass im Unternehmen die Arbeitskleidung zur Verfügung gestellt wird. Dadurch werden Anforderungen des Arbeits- und Gesundschutzes an die Arbeitskleidung erfüllt und nebenbei wird auch ein einheitliches Erscheinungsbild erreicht (Corporate Identity).

Früher war dies anders. Üblicherweise musste der Werker seinen "Blaumann", aus stabilem Stoff hergestellte blaue Arbeitsanzüge, selber beschaffen und auch pflegen. Nur in bestimmten Bereichen, wie zum Beispiel in der Galvanik und in den Prüfständen, hat das Unternehmen die Arbeitskleidung gestellt.

Der hier ausgestellte Overall stammt aus den 1960 er Jahren und wurde von Erich Auersch während seiner Zeit auf den Triebwerks-Prüfständen getragen.

Das Hubschraubertriebwerk T 53 | Die Zusammenarbeit mit der Bundeswehr verfestigt sich

Das Wellenleistungstriebwerk T53 wurde von dem US-amerikanischen Hersteller Lycoming seit Anfang der 1950er Jahre unter der Leitung von Dr. Anselm Franz entwickelt. Dr. Franz hatte bei Junkers die Entwicklung des Strahltriebwerks Jumo 004 geleitet, des ersten serienreif gewordenen Strahltriebwerks der Welt. Diese T53-Triebwerke trieben den Mehrzweckhubschrauber Bell UH-1 an, die in Deutschland bei Dornier in Lizenz hergestellt wurden. Im KHD-Werk Oberursel wurden von 1966 bis 1972 insgesamt 520 dieser T53-Triebwerke produziert, davon 494 für die Bundeswehr und den Bundesgrenzschutz. Dabei kamen einige damals neue Technologien an den Standort, wie das Elektronenstrahlschweißen, das Vakuumlöten oder das Plasmabeschichten.

Auch zu diesem Triebwerk wurden in Oberursel umfassende technisch-logistische Betreuungsleistungen für die Bundeswehr und den BGS erbracht, wozu auch die bis **2012** gelaufene Instandsetzung und Grundüberholung von über 2.400 Triebwerken zählt. Daneben wurden von Mitte der **1980**er

Technische Daten	
Typ:	T53-L-13
Hersteller:	KHD Werk Oberursel in Lizenz von Lycoming
Baujahr:	ab 1966
Leistung (Start / Dauer):	1.044 kW / 932 kW
Abtriebsdrehzahl:	6 564 pro min
Spez. Kraftstoffverbrauch:	0,353 kg/kWh
Luftdurchsatz:	5,6 kg pro Sekunde
Gewicht (trocken):	246 kg

Jahre bis **2013** insgesamt 278 solcher T53-Triebwerke verschiedener Versionen für weitere zivile und militärische Kunden in aller Welt instandgesetzt.

Die Hilfsgasturbine T112 – Die erste Eigenentwicklung eines Luftfahrtgeräts

KHD gewann **1966** die Ausschreibung zur Entwicklung einer Hilfsgasturbine für den deutschen Senkrechtstarter VAK 191 B. Im Luftfahrtbereich wird eine solche Hilfsgasturbine als Auxiliary Power Unit oder kurz APU bezeichnet. Diese Hilfsgasturbine sollte das Flugzeug mit elektrischer und hydraulischer Energie sowie mit Druckluft versorgen. Anfangs war die britische Firma Bristol Siddeley Engines

(1966 in Rolls-Royce aufgegangen) an der Entwicklung beteiligt, welche das Heißteil mit Brennkammer, Kraftstoffeinspritzung, Turbinen-Laufrädern und -Leitkränzen bearbeitete. KHD übernahm den Verdichterbereich der Gasturbine und den Getriebemodul. Der Erstlauf dieses ersten wieder in Oberursel entwickelten Luftfahrtgeräts erfolgte am 25. September 1967. Bis 1972 wurden zehn Prototypentriebwerke geliefert. Das Gerät P008 startete den Senkrechtstarter VAK 191 B am 10. September 1971 zu seinem Erstflug.

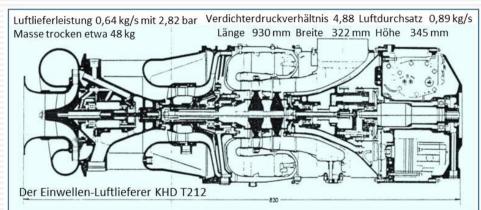
Die Entwicklung des Senkrechtstarters wurde Ende **1972** aufgegeben. Bis dahin hatten die sechs Versuchsgeräte und die zehn Prototypentriebwerke zusammen über 4.900 Betriebsstunden und über 10.500 Starts absolviert. Aus der T112 war da schon das T 212 Luftliefer-Triebwerk für eine Aufklärungsplattform abgeleitet worden, und bald darauf begann die Entwicklung der Hilfsgasturbine T312 für das Secondary Power Systems des tri-nationalen Mehrzweck-Kampfflugzeugs Tornado.

Technische Beschreibung:

Einwellenturbine mit einer äquivalenten Dauerleistung von etwa 96 kW / 130 PS (Zapfluftleistung und 40 kW Restwellenleistung)

Konstruktionsmerkmale:

Zweistufiger Verdichter mit Radialverdichter und vorgeschaltetem transsonischem Axialverdichter, Zweipunkt-Entnahmeluftvorrichtung, Ringbrennkammer mit Umkehrströmung und Verdampferbrennern, zweistufige Axialturbine, Planetengetriebe im Abtriebsstrang und Zwischengetriebe mit zwei rückseitigen Abtriebswellen, Anlassen mittels Elektrostarter.



Die Luftlieferer-Turbine T212 - Eine Gerätefamilie entsteht

1968 beauftragte die Bundeswehr KHD mit der Entwicklung und Herstellung von fünf Erprobungs- und Prototypenexemplaren einer Luftliefer-Gasturbine. Deren Rumpftriebwerk war das Gleiche wie das der gerade in der Entwicklung befindlichen APU T112, am vorderen Ende saß hingegen ein weiterer Radialverdichter als Luftlieferer. Dieser sollte den Rotor der von Dornier entwickelten Aufklärungsplattform "Kiebitz Do 34" mittels Blattspitzenantrieb drehen. Die drei bestellten Prototypentriebwerke T 212 wurden 1971 geliefert, der Erstflug eines Kiebitz erfolgte am 25. Mai 1973. Dornier musste allerdings schon Mitte 1972 zu dem wesentlich stärkeren Triebwerk Allison 250-C20 umschwenken, um die auf 140 Kilogramm erhöhte Nutzlast der Plattform zu bewältigen.

Aufklärungsplattform Kiebitz

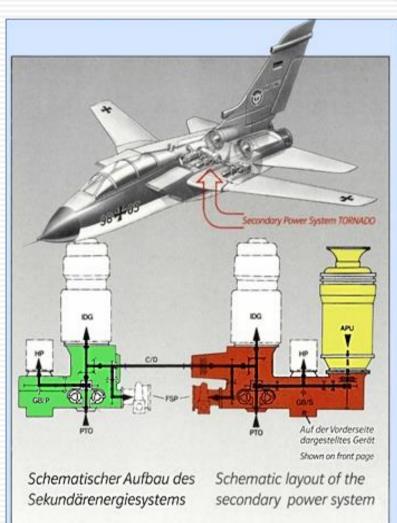
<u>Das Secondary Power System TORNADO – Eine gewaltige Herausforderung</u>

Der TORNADO ist ein zweistrahliges, zweisitziges Mehrzweckkampfflugzeug mit Schwenkflügeln. Das bordeigene Sekundärenergie-System (SPS) macht den TORNADO unabhängig von Bodenversorgungseinrichtungen bei Start und Wartung.

Die wesentlichen Aufgaben des SPS sind das Anlassen der Haupttriebwerke sowie die elektrische und hydraulische Energieversorgung des Flugzeuges am Boden und während des Fluges. Hauptgeräte des SPS sind dabei die beiden Geräteträgergetriebe und die Hilfsgasturbine T312.

Die Hauptgeräte dieses SPS wurden ab Anfang der 1970er Jahre im Werk Oberursel der damaligen KHD AG (seit 2000 ein Standort von Rolls-Royce Deutschland) entwickelt und in Serie produziert. Von 1977 bis 1997 wurden über 1250 Gerätesätze ausgeliefert. Parallel zur Serienfertigung und auch heute noch betreut RRD dieses System technisch und logistisch, liefert Ersatzteile und führt Instandsetzungen und Grundüberholungen durch.

Mehrzweckkampfflugzeug TORNADO



Das Funktionsmodell des Secondary Power System Tornado im Werksmuseum

TORNADO - Mit dem SPS startklar unter allen Bedingungen

Das bordeigene Sekundärenergie-System (SPS) macht den TORNADO weitgehend unabhängig von Bodeneinrichtungen. Es versorgt das Flugzeug mit elektrischer und hydraulischer Energie schon im Bodenbetrieb, und es bewirkt das Anlassen der beiden Haupttriebwerke. Den Antrieb dieses SPS liefert im

Bodenbetrieb dessen Hilfsgasturbine (APU) T312, die elektrisch gestartet wird. Ihre Leistung wird über eine Kupplung zunächst auf das rechte Getriebe übertragen, von dem über eine weitere Kupplung und eine Querverbindungswelle (CD-Shaft) das linke Getriebe zugeschaltet werden kann. An beiden Getrieben (Geräteträgern) sind jeweils ein elektrischer Generator, eine Hydraulikpumpe sowie die Kraftstoff-Vordruckpumpe für das Öl-Kühlungssystem angebracht, und über einen Wandler kann die Wellenverbindung für den Start des jeweiligen Haupttriebwerks aktiviert werden. Sobald eines der Haupttriebwerke läuft, wird die APU automatisch abgekoppelt und abgeschaltet. Das Zusammenwirken der Komponenten des SPS wird von der zugehörigen SPS-Control Unit gesteuert.

Die Hilfsgasturbine T312 - Der "Anlasser" für das Kampfflugzeug Tornado

Dass KHD **1970** den Zuschlag zur Entwicklung einer APU (Auxiliary Power Unit) für das MRCA erhielt, verdankte sie der erfolgreichen Geschichte ihres Vorfahren, der APU T112 für den Senkrechtstarter VAK

191 B. Vom eigenen elektrischen Anlasser gestartet, liefert die APU T312 ihre Wellenleistung über eine Kupplung an das Steuerbord-Geräteträgergetriebe des SPS. Ihre Konstruktionsmerkmale entsprechen denen der T112, die wesentlichen technischen Daten sind der Abbildung beigefügt.

Die APU absolvierte ihren Erstlauf auf dem Prüfstand am 29. Januar 1972. In der Entwicklungsphase wurden 5 Geräte für deren eigene

Auxiliary Power Unit T312

Drehzahl
Turbine 64.000 min⁻¹
Abtrieb 8.000 min⁻¹
Abtrieb 8.000 min⁻¹

Dauerleistung 105 kW
Kurzzeitleistung 114 kW
Masse (trocken) 38,8 kg
Luftdurchsatz 0,872 kg/s
Spez. Kraftstoffverbrauch 0,574 kg/kWh

Entwicklung gebaut, sowie weitere 31 für die Entwicklung und Erprobung des Flugzeugs. Mit einem Vorvertrag lief im August **1976** die Serienfertigung an, bis **1997** wurden 1.350 Geräte produziert.

Die schon bei Programmbeginn geforderte Leistungssteigerung der aus der T112 abgeleiteten APU, von 114 auf 136 kW Spitzenleistung, brauchte rund zwanzig Jahre bis zu ihrer Verwirklichung. Ab Mitte der 1990er Jahre konnte endlich die Umrüstung auf die "Enhanced-APU" erfolgen, deren zulässige Betriebszeit bis zu einer Überholung (TBO) dabei auf 4.000

Technische Daten APU	T312	T312-E	
Dauerleistung	105	127	kW
Kurzzeitleistung	114	136	kW
Turbinendrehzahl	64 000	64 000	/min
Antriebsdrehzahl	8 000	8 000	/min
Spez. Kraftstoffverbrauch	< 0,62	< 0,60	kg/kWh
Luftdurchsatz	0,872	0,975	kg/s
Gewicht (trocken)	40,0	40,7	kg

Starts verdoppelt werden konnte. Die etwa 20%ige Leistungssteigerung wurde im Wesentlichen in der Verdichtersektion erreicht. Ein Radialverdichterlaufrad mit rückwärts gekrümmten Schaufeln hat das bisherige Radialverdichterlaufrad mit dem vorgesetzten Axial-Verdichter ersetzt, womit ein höheres Druckverhältnis und ein höherer Massendurchsatz erreicht wurden.

Die Geräteträgergetriebe G119 – Komplexe hydromechanische Räderwerke

Unter der Bezeichnung G119 sind als Hauptgeräte die Geräteträgergetriebe Steuerbord (GB-S) und Backbord (GB-P), die Verbindungswelle zwischen diesen beiden Getrieben und die SPS-Steuereinheit

zusammengefasst. Mit Vorvertrag vom Oktober 1970 begann die Entwicklung dieser fünf Geräte, wobei man an die noch unausgegorenen Vorentwürfe der damaligen Bremer Vereinigten Flugtechnischen Werke gebunden war. Die Anzahl der in der Entwicklungsphase eingesetzten Geräte spricht für die Komplexität dieser für die Funktion des Flugzeugs so wesentlichen Geräte: 6 GB-S und 5 GB-P für die eigene Entwicklung, sowie 34 GB-S und 28 GB-P für die Entwicklung und Erprobung des Flugzeugs.

Mit Vorvertrag vom August **1976** lief die Serienfertigung an, bis **1997** wurden 1.291 GB-S und 1.246 GB-P produziert. Die Verbindungswelle und die SPS-Steuereinheit wurden bei Unterlieferanten entwickelt und gebaut.

Die beiden Geräteträgergetriebe sind in extremer Leichtbauweise ausgeführt, erkennbar an den filigranen Zahnrädern mit längs- und höhenballigen Zahnflanken, an Wellen aus dem Leichtmetall Titan, den Mitnahmeverbindungen mittels Steckverzahnungen, und strukturgebenden Gehäusen und Deckeln aus dem Leichtmetall Magnesium mit darin eingegossenen langen und verzweigten Kanälen für die Ölführung. Die hydraulischen Wandler für den Triebwerksstart und die beiden Mehrscheiben-Kupplungen der

GB-S und das von diesem Getriebe mit zu versorgende Olsystem der APU und des Generators IDG führten zu einem sehr komplexen Hydrauliksystem, das auch bei minus 40 Celsius den Start eines Flugzeugs gewährleisten musste.

Das

Messemodell

Gearbox S

im Aufbau

Drohnenantrieb T117 - Das erste serienmäßige deutsche Strahltriebwerk nach 1945

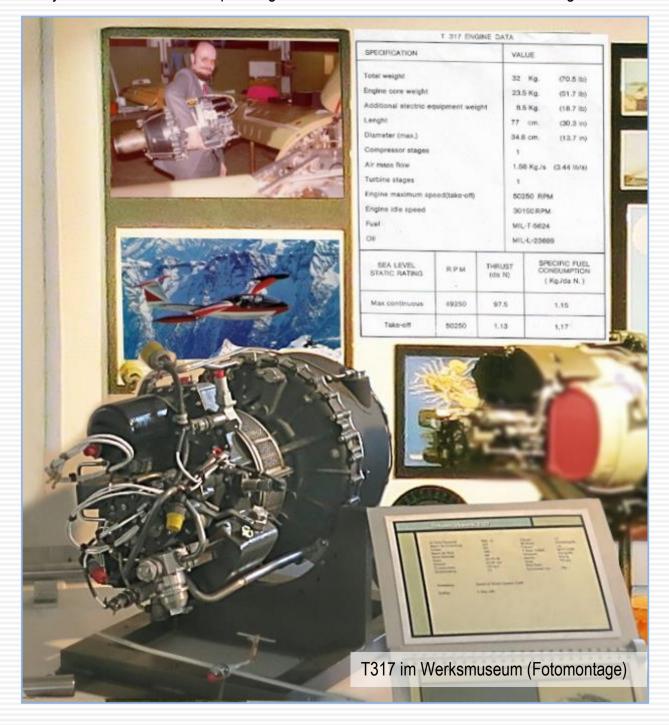
Das mit 1.000 Newton Schub sehr kleine Strahltriebwerk T 117 wurde zum ersten nach **1945** in Deutschland entwickelten und in den Serieneinsatz gegangene Luftfahrttriebwerk. Die T117 diente als Antrieb

der deutsch-französischen Aufklärungsdrohne CL289.

Nach zweijährigen Vorarbeiten begann 1976 die Basisentwicklung des Triebwerks, dessen Erstlauf am 12. Oktober 1977 erfolgte. Mit dem Ende 1978 ersten von insgesamt 30 an die kanadische Systemfirma Canadair gelieferten Triebwerk begann dort die Gesamterprobung des Drohnensystems. Die erst volle zehn Jahre später bestellten 288 Serien-Triebwerke wurden bis Anfang 1993 produziert.

Mit dem Drohnensystem CL289 sollte der militärische Operationsraum bis in 170 Kilometer Tiefe aufgeklärt werden. Der Start des Flugkörpers erfolgte bei laufendem Marschtriebwerk mittels einer Feststoffrakete von einem LKW aus. Die vorprogrammierte Flugstrecke betrug bis zu 400 Kilometer bei Flughöhen zwischen 125 und 3.000 Meter, die Fluggeschwindigkeit etwa 740 km/h.

Bei den französischen und deutschen IFOR- und KFOR-Einsätzen von **1996** bis **1999** über dem Balkan bildeten die CL289-Drohnen das Rückgrat der Aufklärung der NATO-Kräfte. Bis zum Einsatzende des Systems **2009** wurde das Triebwerk von Oberursel aus umfassend technisch-logistisch betreut, 785 Triebwerke wurden bis dahin instandgesetzt und überholt.



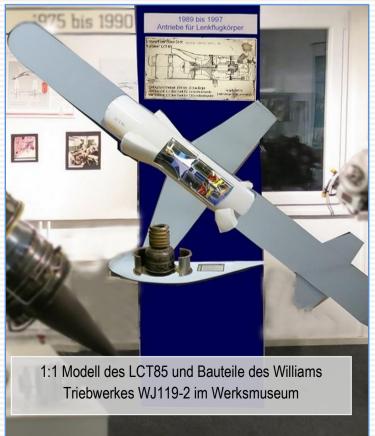
Das Strahltriebwerk T317 – Antrieb für einen bemannten Jet-Trainer?

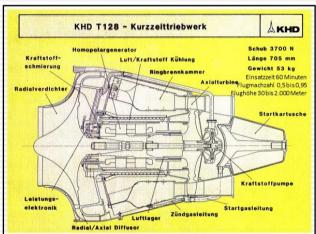
Auf Grundlage des Kerns des Triebwerks T117 kam es schon ab Mitte der **1970**er Jahre zur Konzeption weiterer Turbojet-, Turbofan- und auch Turboprop-Triebwerke sowie verschiedener Hilfsgasturbinen für erhoffte aber auch konkrete Bedarfe.

Sehr verheißungsvoll schien das Projekt eines kleinen Strahltrainers der traditionsreichen italienischen Firma Caproni mit der Bezeichnung C-22J. Das dafür entwickelte Strahltriebwerk mit der Bezeichnung T317 absolvierte **1979** seinen Erstlauf, und, nach einem erfolgreichen 150-Stunden-Dauerlauf, stand es **1983** kurz vor der Luftfahrtzulassung. Doch dann kippte, mit der Übernahme von Caproni durch Augusta, das Projekt. Eines der beiden Erprobungstriebwerke konnte für das Werksmuseum gesichert werden.

Turboantriebe für Marschflugkörper - Vom Turbojet T128 zum Polyphem-Antrieb LCT85

Neben der Entwicklung des Turbojets T117 und den damit verwandten Projekten befasste sich KHD schon ab Anfang der **1980**er Jahre in verschiedenen Studien- und Entwicklungsprojekten mit Turbo-Antrieben für Marschflugkörper, auch bekannt als Cruise-Missiles oder Lenkflugkörper.


Dazu gehörten folgende Projekte:


- Turbojet T128 mit 3.700 N Schub, Entwicklung ab 1980, Erstlauf Prüfstand 1986, Einstellung des Projektes 1992. Vergleichsstudie 1984/1985 zu einem alternativen Turbofan-Triebwerk mit 3.500 N Schub.
- Antrieb des multinationalen Lenkflugkörpers "Polyphem": a)
 Konzeptstudie LCT30 (Low Cost Turbine mit 30 dN Schub)
 1989/1990 und, ab 1991 gemeinsam mit Williams International
 (USA), die Anpassung und Weiterentwicklung des Williams-

Der 1986 gebaute Technologie-Demonstrator KHD T128 X

Triebwerks **WJ119-2**; der Erstlauf war im Dezember **1993**, erster Missionsflug im April **1997**. b) Ab **1994**, gemeinsam mit Microturbo, Projektierung und Vorentwicklung des 850 N-Schubtriebwerks **LCT85**; Ausschreibung zu Serienreifmachung und Produktion von 20.000 Triebwerken Ende **1994** gewann Konkurrent US-Firma Teledyne (Polyphem-Projekt wurde 2003 eingestellt).

Mit dem Ausstieg Deutschlands aus dem PO-LYPHEM Programm endeten 1994 auch die von KHD übernommenen Aktivitäten bei BMW Rolls-Royce zu solchen Turbojets.

30 Jahre Industriegasturbinen in Oberursel

Das Exponat der Turbine KHD T009 steht repräsentativ für die Geschichte der Industriegasturbinen. Nach dem gelungenen Einstieg mit der Kleingasturbine T16 blieben etliche weitere Entwicklungsprojekte ohne Erfolg. Hervorzuheben ist dabei die **1971** vorgestellte Kleingasturbinenfamilie KHD 75, mit Varianten von 15, 30 und 60 kW Leistung.

Allerdings hatte sich die KHD AG schon seit **1962** mit Industrieanlagen befasst, die von Gasturbinen britischer oder US-amerikanischer Hersteller angetrieben werden sollten. Realisierte Projekte:

- 1964 Pipeline-Pumpstation in Lingen, mit 4200 PS Proteus-Triebwerk von Bristol-Siddeley Engines
- 1967 das 3 MW-Kraftwerk Proteus
- 1973 zwei mobile 4,2 MW- Kraftwerke, mit Avco-Lycoming TF35-Industriegasturbinen
- 1975 und 1976 zwei stationäre Kraftwerke TF35
- 1977 Die Luftkissenfähre SEDAM N500, mit zwei Hub- und drei Antriebs-Triebwerken Avco-Lycoming TF-40 mit 2.535 kW Leistung, sowie zwei T216- Gasturbinen für die Generatoraggregate

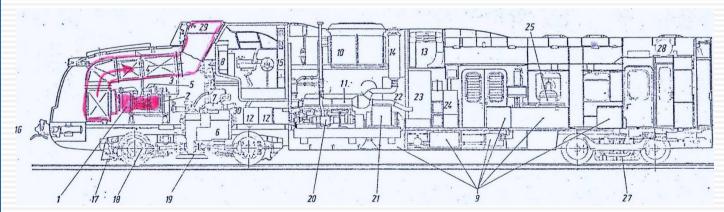
Die Geschäftsabwicklung zu diesen Projekten lag bei KHD in Köln, aber die praktische Inbetriebnahme von Anlagen sowie deren Einsatzbetreuung, das besorgte eine Kundendienstgruppe in Oberursel. Nach der Übernahme der Mannheimer Motorenwerke im Jahr 1985 durch KHD ging das Geschäft mit allen Aktivitäten zu der neuen MWM Diesel- und Gastechnik GmbH in Mannheim.

Die Kleingasturbine T009

1988 unternahm KHD Luftfahrttechnik einen erneuten Anlauf zu Industriegasturbinen Man wollte die einwellige Kawasaki-Turbine S5-02 von 23 auf 32 kW Leistung steigern, um sie damit für einige militärische Anwendungen anbieten zu können. Die Ausgangsturbine erwies sich allerdings als nicht betriebsfest und das Projekt wurde Anfang der **1990**er Jahre eingestellt.

<u>Lokomotiven-Antriebe – Interessante Erprobungsprojekte mit der Bundesbahn</u>

Auch verschiedene Eisenbahnbetreiber befassten sich schon ab den 1960er Jahren mit den Möglichkeiten eines zusätzlichen (Booster) oder alleinigen Antriebs von Schienenfahrzeugen mit Gasturbinen.


Die Deutsche Bundesbahn verfolgte mit KHD drei Projekte:

- 1965 Die Turbodiesellokomotive 219 001: Boosterantrieb mit 900 PS-Gasturbine LM 100 von GE; Erprobungsprogramm 1965 bis 1974 mit 712.899 Betriebsstunden
- 1970 Acht Turbodiesellokomotiven DB-Baureihe 210: Boosterantrieb mit einer in Oberursel hergestellten 845 kW-Gasturbine T53-L-13; Einsatz auf der Allgäustrecke von 1970 bis 1979, dabei 2.800 bis 4.200

• 1972 - Vier Gasturbinen-Triebwagen VT 602: Vollantrieb mit 1.620 kW Gasturbinen TF 35 von Lycoming. Nach umfangreichen Erprobungen Einsatz Intercityverkehr von 1974 bis 1979

In insgesamt 13 Jahren Erprobungs- und Einsatzbetrieb hatten die Bundesbahn und KHD technisches Neuland betreten und viele Erfahrungen sammeln können. Der Gasturbinenbetrieb konnte sich nicht durchsetzen. Im Werksmuseum können wir lediglich mit Präsentationsunterlagen an diese Projekte erinnern.

<u>Die Fahrzeuggasturbine GT601 – Ein transatlantisches Programm</u>

Das gewichtige Exponat GT601 erinnert an die Ära der Fahrzeuggasturbinen unter der Regie der Kölner Klöckner-Humboldt-Deutz AG.

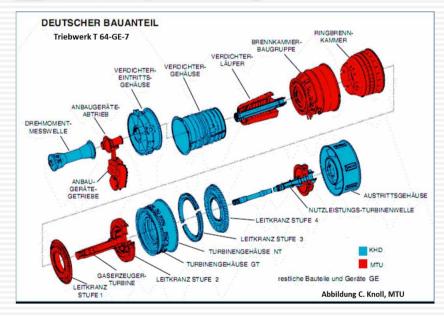
Schon **1966** legte man in Oberursel den Entwurf zu einer 450 PS-LKW-Turbine mit Wärmetauscher vor. Für ein Erprobungsprogramm im Magirus-LKW beschaffte man allerdings eine bei PWC verfügbare Gas-

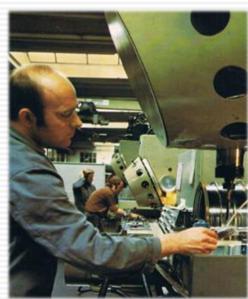
turbine ST6. Die Fahrversuche von **1968** bis **1972** führten zu positiven Ergebnissen. So stieg man **1972** in das Konsortium ITI mit Garrett, Mack Trucks und Volvo zum Gemeinschaftsprogramm GT601 ein. Der Erstlauf der zweiwelligen 550 PS-Turbine, die über zwei Radialverdichterräder, eine Topfbrennkammer, je ein axiales Gasgenerator- und Arbeitsturbinenrad und einen Rekuperator zur Nutzung der Abgaswärme verfügte, erfolgte im April **1977**. Das Fahr-Erprobungsprogramm begann im Februar **1978**

und lief bis **1986**. Mit den drei eingesetzten Turbinen-LKW wurden etwa 100.000 km gefahren, bei der Erprobung mit verschiedenen Panzerfahrzeugen nochmals etwa 10.000 km.

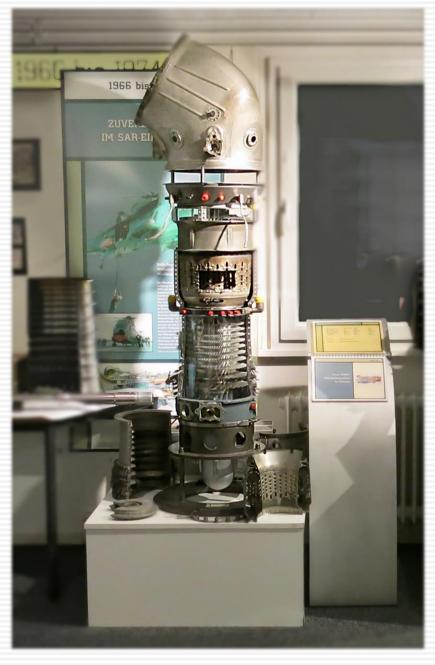
<u>Das Hubschrauber-Triebwerk T64 – Teilefertigung mit neuen Technologien</u>

KHD hat als Unterauftragnehmer von MTU wesentliche Bauteile beim Lizenzbau des General Electric Triebwerks T 64 -GE-7 für den Bundeswehr-Hubschrauber CH-53 geliefert. Vom Anlauf der Fertigung


1971 bis Oktober 1974 wurden insgesamt 232 Teilesätze geliefert. Keine große Stückzahl, dennoch war dieses Programm wichtig für die weitere Entwicklung der Fertigungstechnologien in Oberursel. Denn dabei wurden wesentliche und über die bisherigen Programme hinausgehende Erfahrungen bei der Bearbeitung von Titan, hochwarmfesten Nickelund Kobaltbasislegierungen sowie mit Vakuumlötun-



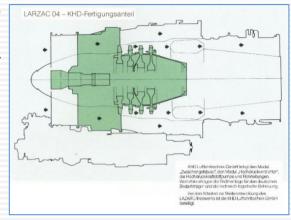
gen, Plasmabeschichtungen und anderen Spezialverfahren gesammelt. Vor allem aber erfolgte mit diesem Programm **1971** der Einstieg in die neue Bearbeitungstechnik mit "NC-Maschinen" (Numerisch gesteuerte Werkzeugmaschinen).



Das Helikopter-Triebwerk Gnome H1400 - Im Boot mit Bundesmarine und Rolls-Royce

Für den seit **1974** bei der Bundesmarine geflogenen Seenot-Rettungshubschrauber Sea King erbringt Oberursel seit dessen Indienstellungsphase technisch-logistische Betreuungsleistungen für die beiden Antriebstriebwerke Gnome H1400-1. Bis Ende **2018** wurden 850 Gnome-Triebwerke für die Bundeswehr instandgesetzt oder überholt, weitere 903 Triebwerke im Auftrag von Rolls-Royce für deren Kunden in

verschiedenen Ländern. Dies begann **1992** zunächst als Überbrückungsmaßnahme, seit **2009** ist der Standort Oberursel der einzige Instandsetzer für diesen Triebwerkstyp.


Technik: Das Gnome H1400-1 Wellenleistungs-Turbinentriebwerk über einen 10-stufigen Axialverdichter, eine Ringbrennkammer mit 16 Kraftstoffdüsen, eine zweistufige Gaserzeugerturbine und eine einstufige freilaufende Arbeitsturbine. Der Abtrieb erfolgt nach hinten durch das Gasaustrittsgehäuse hindurch. Die Eintrittsleitschaufeln sowie die Leitschaufeln der ersten drei Verdichterstufen sind verstellbar ausgeführt. Dauerleistung des Triebwerks beträgt etwa 929 kW (1.263 PS), die Ein-Stunden-Leistung 1.141 kW (1.550 PS). Das Trockengewicht mit Starter und Rechner liegt bei 170 kg

Das Turbofan-Triebwerk Larzac 04 – Praktizierte deutsch-französische Kooperation

Die Produktion und die Nutzung des Waffensystems AlphaJet und dessen Triebwerk Larzac 04 sind Kinder der deutsch-französischen Versöhnungspolitik. Das modular aufgebaute Turbofan-Triebwerk Larzac 04 wurde ab **1969** von dem französischen Konsortium Groupement Turboméca-SNECMA

(GRTS) entwickelt und **1972** als Antrieb für das deutsch-französische Trainings- und Erdkampfflugzeug AlphaJet ausgewählt. Die **1977** begonnene Serienfertigung war auf die vier Kooperationsfirmen SNECMA, Turbomeca, KHD (grün angelegt) und MTU als jeweilige Alleinlieferanten für bestimmte Bauumfänge aufgeteilt. Dies gilt auch heute noch für die Ersatzteilefertigung,auch für RRD. Die Endmontage und Abnahmeprüfung aller 420 für die Bundeswehr bestimmten Triebwerke erfolgte bis Mitte **1981** bei KHD in Oberursel. Bis

zur Außerdienststellung des Waffensystems bei der Bundeswehr **1994** wurden in Oberursel umfangreiche technisch-logistische sowie entwicklungstechnische Betreuungsleistungen erbracht. Bis dahin wurden auch 568 Triebwerke in Oberursel instandgesetzt, allein 251 wegen der Umrüstung auf die leistungsgesteigerte Version C20, weiterhin 1.360 Module.

Anschließend unterstütze Oberursel die Bemühungen der Bundeswehr zum Verkauf ihrer AlphaJet und Triebwerke an fremde Betreiber, wozu auch die Verwendung von Larzac 04-Triebwerken im Turbolö-

scher der BASF zählte.

<u>Technik:</u> Das Triebwerk Larzac 04 ist ein axial durchströmtes Zweiwellen-Triebwerk mit zweistufigem Fan, einem vierstufigem Hochdruckverdichter, einer Ringbrennkammer sowie jeweils einem Hochdruck- und einem Niederdruckturbinenrad.

Standschub: 13,19 kN (C6) 14,12 kN (C20)

Masse (trocken): 302 kg

Länge: ca. 119 cm

Außendurchmesser: 60,2 cm Innendurchmesser Fan: 45.2 cm

Das Turbofan-Triebwerk CFM56 - Der Einstieg in die zivile Luftfahrt

1974 fanden sich die Triebwerksfirmen General Electric und Snecma (heute Safran) gleichberechtigt in der Kooperation CFM International zur Entwicklung der Triebwerksfamilie CFM56 zusammen. Tausende

von Flugzeugen, insbesondere die Boeing 737, die Mitglieder der Airbus A320-Familie und die A340, setzen auf CFM56-Triebwerke. Die verschiedenen Triebwerkstypen decken einen Schubbereich von 87 bis 150 kN ab.

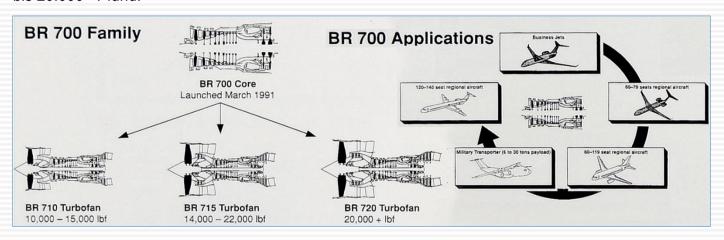
Die damalige KHD Luftfahrttechnik GmbH stieg **1986** mit einem ersten Paket als "Risk- and Revenue-Sharing-Partner" von Snecma in die Herstellung von CFM56-Bauteilen ein.

Bedingungen und Verfahrensvorgaben der US-Zulassungsbehörde Federal Aviation Administration (FAA) erfüllen. Das machte die KHD Luftfahrttechnik GmbH später attraktiv für BMW als Basis für deren beabsichtigten Wiedereinstieg in den Flugmotorenbau!

Dem folgten drei weitere Pakete für neuere Triebwerksvarianten **1989**, **1990** und **1994**. Auch wenn deren Serienfertigung **2022** ausläuft, werden noch über Jahrzehnte Ersatzteilbedarfe zu decken sein.

Über das direkt geschäftliche Hinaus war dieses Programm von erheblicher Bedeutung, denn KHD musste als Lieferant der Firma Snecma praktisch alle relevanten

1990 - Aufbruch in eine neue Ära mit BMW und Rolls-Royce


Im Jahr 1990 übernahm die BMW AG, die 1916 als Flugmotorenhersteller entstanden war, von der ins Trudeln geratenen Klöckner-Humboldt-Deutz AG den Standort Oberursel mit dem Geschäft der bisheri-

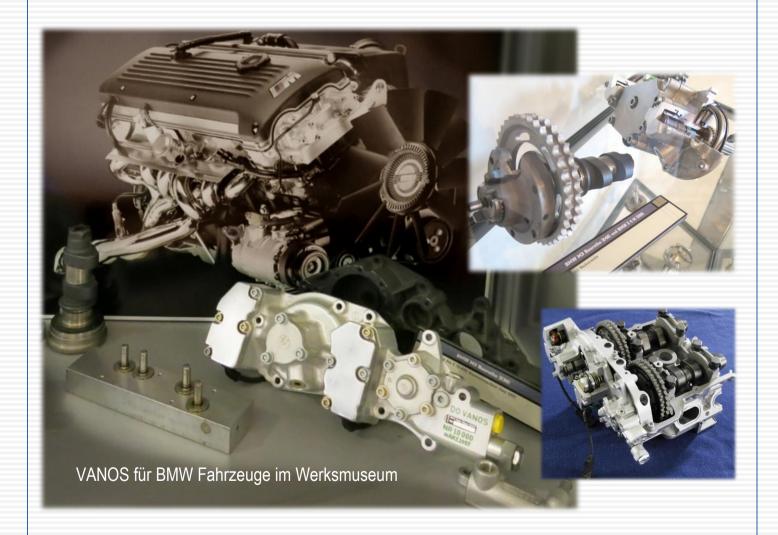
gen KHD Luftfahrttechnik GmbH. Im gleichen Zug gründeten BMW mit dem britischen Triebwerkshersteller Rolls-Royce die neue Firma BMW Rolls-Royce AeroEngines (BRR) mit Sitz in Oberursel.

Unmittelbar nach ihrer Gründung begann BRR mit den Aktivitäten für eine neue Familie von Turbofantriebwerken mit den Typen BR 710, BR 715 und BR 720 im Schubbereich von 45 – 90+ kN, also 10.000 bis 20.000+ Pfund.

Core Engine Montage

Im März 1991 begann die Entwicklung des Kerntriebwerks (Core Engine) für die BR 700 Familie, der Erstlauf der Core Engine fand bereits im August 1993 statt. Nach der Eröffnung des auf der grünen Wiese errichteten Entwicklungs- und Montagezentrums in Dahlewitz (bei Berlin) wurden im Herbst 1993 dort zunächst die Entwicklungsabteilungen zusammengeführt, unmittelbar folgend wurden dort schrittweise die Triebwerksmontage und Abnahmetests, die Administration sowie der Kundendienst aufgebaut.

Das Werk in Oberursel wurde im Laufe der **1990** er Jahre grundlegend umstrukturiert, modernisiert, ausgebaut und mit vielen neuen Maschinen und Einrichtungen in seinen Produktionsfähigkeiten auf die Fertigung komplexer Bauteile, primär für die eigenen Triebwerke, ausgerichtet.



BMW-VANOS: Ein Lernobjekt für Oberursel

Mit variablen Nockenwellensteuerungen, den VANOS, bezweckte BMW die Erhöhung der spezifischen Leistung und des Drehmoments im unteren Drehzahlbereich bestimmter Hochleistungsmotoren, bei gleichzeitiger Verringerung des Kraftstoffverbrauchs bei ihren sportlichen Fahrzeugen.

Zur Auslastung der Produktion, vor allem aber zwecks Erfahrungsaufbau zu der für die Triebwerksfertigung vorgesehenen Bauteileproduktion in flexiblen Fertigungsinseln, übernahm Oberursel ab **1991** die Produktion von variablen Nockenwellensteuerungen. Bis **2008** wurden in der dazu erfolgreich betriebenen Fertigungsinsel VANOS über 234.000 Einheiten der verschiedenen Typen im Werk produziert, anschließend noch weitere etwa siebentausend Einheiten aus vorproduzierten Einzelteilen montiert und geliefert.

<u>Das Turbofan-Triebwerk BR710 – Ein neuer Antrieb für große Business-Jets</u>

Der erste von BMW Rolls-Royce AeroEngines entwikkelte und produzierte Triebwerkstyp war das Muster BR710. Erstkunden dafür waren die Firmen Gulfstream und Bombardier, die mit ihren jeweiligen Langstrecken- Business-Jets G V und Global Express neue Maßstäbe setzten. Das im brandenburgischen Dahlewitz entwickelte Triebwerk erhielt 1996 seine Musterzulassung. Es ist das überhaupt erste in Deutschland entwickelte und in Serie gebaute zivile Flugtriebwerk mit internationaler Zulassung.

Wesentliche Programm-Meilensteine waren:

- Erstlauf des in Oberursel gebauten Kerntriebwerks BR700 am 14. August 1993
- Erstlauf des Triebwerks BR710 am 1. Sept. 1994
- Erstflug in einer GV am 28. November 1995
- Musterzulassung von der europäischen Zulassungsbehörde JAA am 14. August 1996
- Lieferung der ersten 16 Serientriebwerke im Jahr 1996

Technische Daten

Typ: BR700-710A1-10

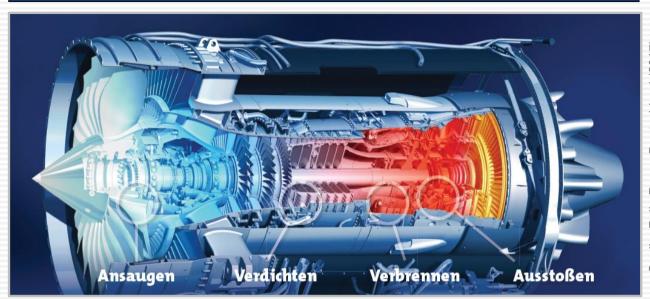
Hersteller: BMW Rolls-Royce AeroEngines

Baujahr: 1996 Gewicht: 1.851 kg Einheitsgewicht: 28,5 kg/kN Spez.Verbrauch: 59,04 kg/kNh

Startleistung: 66 kN

Stückzahl: Über 3500 (3/2020, noch in Produktion) Verwendung: Gulfstream GV, Bombardier Global-

Express, Nimrod



Viele der Schlüssel-Bauteile für diesen Triebwerkstyp wurden In Oberursel gefertigt.

Exkurs: Wie funktioniert ein Strahltriebwerk?

Quelle: Rolls-Royce Deutschland (2017)

ANSAUGEN: Der Fan - das gut sichtbare Schaufelrad an der Vorderseite des Triebwerks - saugt eine große Menge Luft ein und beschleunigt sie. Die größten Rolls-Royce Triebwerke haben einen Fandurchmesser von rund 3 Metern und bewegen so bis zu 1,2 Tonnen Luft pro Sekunde. Nur ein kleiner Teil dieser Luft wird in das Kerntriebwerk geleitet, das aus Verdichter, Brennkammer und Turbine besteht. Rund 75 Prozent werden außen um das Kerntriebwerk geführt und erreichen als "Mantelstrom" direkt die Schubdüse. Dieser äußere Luftstrom liefert rund drei Viertel des Gesamtvortriebs des Triebwerks.

Materialien: Titanlegierung oder Faserverbundwerkstoffe

<u>VERDICHTEN:</u> Die in das Kerntriebwerk eingeleitete Luft wird durch viele schnell rotierende Schaufelräder immer mehr zusammengepresst (verdichtet), erhitzt sich dabei und wird gleichzeitig verlangsamt. Über mehrere Verdichterstufen hinweg wird die Luft bei der neuesten Generation von Großtriebwerken bis auf ein Fünfzigstel ihres normalen Volumens komprimiert. Würde man die Luft aus einer Telefonzelle in einen Mikrowellenofen pressen, herrschte darin ein vergleichbarer Druck.

Materialien: Legierungen auf Basis von Titan, Stahl oder Nickel

<u>VERBRENNEN:</u> Die von den Verdichterstufen stark komprimierte und erhitzte Luft wird in die Brennkammer geführt, dort mit Kerosin vermischt und verbrannt. Die entstehenden Verbrennungsgase dehnen sich sehr schnell in Richtung der Turbine aus. In der Brennkammer entstehen bei den neuesten Großtriebwerken Temperaturen von bis zu 2.300 Grad Celsius - das entspricht nahezu der Hälfte der Temperatur auf der Sonnenoberfläche. Würde die Brennkammerwand nicht permanent über ein ausgetüfteltes System lasergebohrter Kühllöcher mit Luft aus dem Verdichter durchströmt, würde sie schmelzen. Zu ihrem Schutz tragen zusätzlich keramische Dämmschichten bei, die zwar nur so dick sind wie zwei Blatt Papier, die Temperaturbelastung aber dennoch um etwa 300 Grad Celsius verringern können.

Materialien: Hochtemperaturfeste Nickellegierungen mit Keramikbeschichtung

<u>AUSSTOSSEN:</u> Die heißen Gase aus der Brennkammer werden durch eine Reihe von Turbinenstufen geleitet. Jede einzelne von ihnen gewinnt ähnlich einer Windmühle Energie aus dem steten Gasstrom. Diese Energie wird dazu genutzt, um über Wellen den Fan und den Verdichter anzutreiben. Die Schaufeln müssen aufwendig gekühlt werden, damit sie nicht schmelzen. Die heiße Luft dehnt sich auf ihrem Weg durch die Turbinenstufen aus, kühlt ab, tritt dann durch die Schubdüse am Ende des Triebwerks aus und erzeugt so zusätzlichen Schub. Dabei wird die heiße Luft aus dem Kerntriebwerk mit dem kalten Mantelstrom vermischt - diese Kombination macht heutige moderne Triebwerke so leise und effizient.

Materialien: Hochtemperaturfeste Nickel-Einkristall-Legierungen

<u>Das Turboprop-Triebwerk BR700-TP – Antrieb des "Future Large Aircraft"</u>

Das Modell im Maßstab 1:3 erinnert an das im Dezember **1998** von BMW Rolls-Royce bei Airbus Industries vorgelegte Angebot zu dem als BR700-TP bezeichneten Antrieb für das Projekt Militärtransporter "Future Large Aircraft". Das Kerntriebwerk dieses BR700-TP beruhte auf dem Turbofantriebwerk BR715, das um ein von Rolls-Royce-Allison entworfenes Propeller-Reduktionsgetriebe ergänzt wurde.

Konkurrierende Anbieter waren Pratt & Whitney und ein europäisches Konsortium aus Fiat Avio, ITP, MTU und Snecma. Entsprechend einer vom Auftraggeber gewünschten gesamt-europäischen Zusammenarbeit gründeten Rolls-Royce, ITP, MTU und Snecma im Juli **2001** das Konsortium Aero Propulsion Alliance, das später von der Europrop International (EPI) abgelöst wurde. Diese erhielt im Mai **2003** den Zuschlag zur Entwicklung des als TP400-D6 bezeichneten Triebwerks, das mit 11.000 Wellen-PS (8.203 kW) zu den stärksten Triebwerken seiner Art zählt.

2003 bestellten die auftragsgebenden Nationen die ersten 180 Flugzeuge A400M bei Airbus, und damit begann die Entwicklung des TP400 Triebwerks. Die Rolls-Royce (RRD) zugeordneten Arbeitsumfänge umfassten die Triebwerksintegration, die Konstruktion und Entwicklung des Hochdruckverdichters, des

Das 1:3 Modell des BR700-TP im Werksmuseum

Zwischengehäuses, der Niederdruckwelle und des Turbinenzwischengehäuses. Die Bauteile des aus der BR700-Familie abgeleiteten Hochdruckverdichters, mit den Gehäusen und den vier Blisk-Stufen (Blade-Integrated-Disk) wurden in Oberursel gefertigt.

Der Jungfernflug des Militärtransporters A400M erfolgte am 11. Dezember **2009**.

Die zunächst bei RRD liegenden Aktivitäten wurden später zu RR in Bristol verlagert. Nach rund zehn Jahren wurde im Herbst 2014, mit der Auslieferung des letzten von 25 Hochdruckverdichtern für das Erprobungsprogramm, die Entwicklungsmontage in Dahlewitz aufgelöst. Im März 2016 wurde der letzte von 331 Hochdruckverdichtern an den EPI-Partner MTU für die Serienmontage der TP400 geliefert, nachdem der Arbeitstransfer an Rolls-Royce in Bristol abgeschlossen worden war. In Oberursel werden weiterhin die Hochdruck-Verdichtertrommeln mit den vier Blisk-Stufen gefertigt.

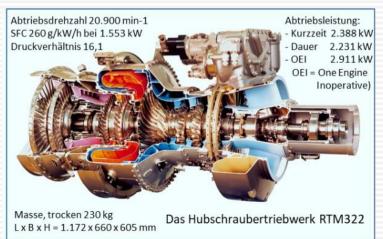
Die Hilfsgasturbine RE220 - Eine kurze Renaissance

Nachdem sich herausgestellt hatte, dass es für die beiden neuen von BR710-Triebwerken angetriebenen Business-Jets keine passende APU auf dem Markt gibt, taten sich die Firmen BRR, Kawasaki Heavy Industries, Alfa Romeo Avio und Singapore Aerospace unter Führung von Allied Signal in Phoenix 1993 zwecks deren Entwicklung und Bau zusammen. Die Typenbezeichnung RE220 stand für Regional- und

Executive-Jets und für die Leistungsklasse 220 kW. BMW Rolls-Royce war unter anderem für die Entwicklung der Verdichtersektion zuständig, ein Gebiet, auf dem die frühere KHD Luftfahrttechnik eine technologische Spitzenstellung in der Welt besessen hatte. Somit konnte man auf die mit dem Demonstrator-Triebwerk T118-X gesammelten umfangreichen Erfahrungen zurückgreifen. Der Erstlauf einer kompletten Turbine erfolgte am 29. Juli 1994 in Phoenix/Arizona, in Oberursel wurde im Rahmen der Entwicklung ein 600-Stunden-Dauerlauf gefahren, der am 31. Mai 1995 erfolgreich abgeschlossen wurde. Die erste Serien-APU kam im Februar 1996 zur Ausliefe-

rung an Gulfstream. Allerdings passten die RE220-Bauteile nun nicht mehr in die auf BR700-Komponenten umgestellte Oberurseler Fertigung, sodass die Kostenziele nicht erreicht wurden, und so stieg BMW Rolls-Royce zum 31. Dezember **2000** aus dem Programm aus.

Einstufiger Radialverdichter
Umkehr-Ringbrennkammer
Zwei Axialturbinenstufen
Drehzahl 45.585 min⁻¹
L x B x H = 1.070 x 690 x 445 mm
Masse, trocken 110 kg
Druckverhältnis 5,47
Durchsatz 3,28 kg/s
Generatorantrieb 45 kW
Luftlieferung 1,22 kg/s bei 4,0 bar oder 1,33 kg/s bei 3,75 bar
Startfähigkeit bis 13.100 m Höhe
Generatorleistung bis 13.700 m



Das Hubschrauber-Triebwerk RTM 322

Das RTM322-Wellenturbinentriebwerk der Firma "Rolls-Royce Turbomeca Ltd" wurde im Jahr **2000** als Antrieb für den NH90 Mehrzweckhubschrauber Deutschlands, der Niederlande und Frankreichs ausgewählt. Der RRD-Fertigungsanteil an der Lieferung der für die Bundeswehr bestimmten Triebwerke betrug etwa 23 %. Ab **2002** wurden bestimmte Einzelbauteile, das Anbaugerätegetriebe und das Modul 5 in Oberursel produziert. Montage und Abnahme der für die Bundeswehr-Hubschrauber bestimmten Triebwerke gehörten ebenfalls zum Fertigungsumfang von RRD. **2004** wurden die ersten in Oberursel montierten Triebwerke ausgeliefert, das 100ste Triebwerk wurde im September **2009** geliefert. Im April **2010** wurde die Montage und Abnahme an das RR-Werk in Bristol transferiert. Auch die Bauteilefertigung

wurde sukzessive verlagert, nach 838 Teilesätzen und 105 kompletten Triebwerken sowie der Verlagerung der Betreuungsaktivitäten endete **2016** das Kapitel RTM322 in Oberursel.

Beschreibung und technische Daten:

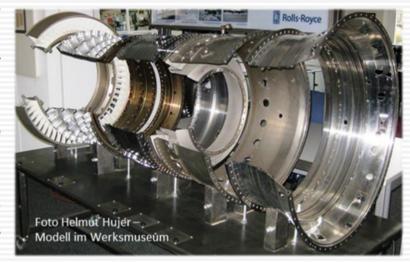
Das RTM322 ist ein 2-Wellentriebwerk mit zweistufiger Niederdruckturbine zum Antrieb der Abtriebswelle, sowie einer 2-stufigen Hochdruckturbine zum Antrieb des 3-stufigen Axialverdichters und des einstufigen Radialverdichters.

FADEC Steuerung.

Startleistung: 1788 kW / 2431 PS

Länge: 113cm, Höhe: 66 cm, Breite: 61 cm

Gewicht: 228 kg



<u>Die Produktion von BR700-Bauteilen – Die eigenen Triebwerke im Vordergrund</u>

Einhergehend mit der Festigung des Produktportfolios von BMW Rolls-Royce AeroEngines wurde das Oberurseler Werk umfassend umstrukturiert und modernisiert. Das bisher vorherrschende Werkstättenprinzip wurde abgelöst von Fertigungsinseln mit möglichst weitgehender Autonomie bei der Herstellung

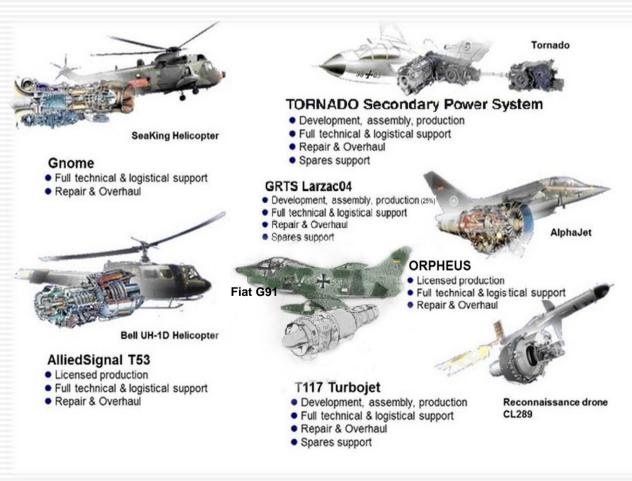
bestimmter, charakteristischer Bauteilfamilien. Hergestellt werden sollten vor allem Schlüsselbauteile für die eigenen BR700-Triebwerke in den hierzu aufgebauten Fertigungsinseln für Rings & Seals, Casings, Discs & Drums sowie Small Parts für die Bauteile der alten Programme.

Die Exponate "Casings", also stationäre Bauteile des Triebwerksmantels, sowie die Verdichtertrommel des BR710-Triebwerks zeigen in eindrucksvoller Weise den dabei erreichten technologischen Stand.

Von 1995 bis 2010 gefertigte Gehäusebauteile BR710/BR715

Rotierende Triebwerksbauteile - Oberursel als Kompetenzzentrum bei Rolls-Royce


2000: Nach dem Rückzug von BMW aus dem operativen Triebwerksgeschäft wandelte sich die Fertigungsstruktur in der neuen Firma Rolls-Royce Deutschland, einer 100%igen Rolls-Royce-Tochter. Das Werk wurde in einem längeren Prozess voll in die Produktionsstruktur von Rolls-Royce integriert und zum Kompetenzzentrum für rotierende Triebwerksbauteile umstrukturiert. Zum besonderen Schwerpunkt wurde die Produktion von Scheiben und Verdichtertrommeln in Blade-Integrated-Disk-Bauweise



Betreuungs- und Instandhaltungszentrum für Luftfahrtantriebe

Von Anbeginn der Gasturbinenfertigung war und ist der Standort zudem Betreuungs- und Instandhaltungszentrum für Gasturbinen und Luftfahrtgerät. Das beinhaltet die technische und logistische Betreuung, Ersatzteilversorgung sowie Reparatur und Überholung der hier hergestellten Luftfahrtgeräte, umfasst aber auch "fremde" Triebwerke wie z.B. die Rolls-Royce Triebwerke GNOME H1400, GEM und für die technische und logistische Unterstützung des im Aufklärungsflugzeug P-3 Orion installierten Rolls-Royce T56-A-14-Propellermotors im Auftrag des Bundesmarines, einschließlich der Kontrolle der Reparatur- und Überholungsaktivitäten am Standort des Subunternehmers.

Das Salz in der Suppe - Kleine Entdeckungsreisen

Neben den Großobjekten zeigen sich in mehreren Vitrinen ergänzende Zeugnisse und zahlreiche Klein-Exponate zu besonderen Projekten und Erzeugnissen, zu Fertigungstechnologien oder sonstigen technischen Besonderheiten.

Zur sozialen Infrastruktur - Auch das prägt ein Unternehmen

Zum Funktionieren gehört zumindest in größeren Betrieben auch ein Unterbau sozialer Art, mit Gemeinschaftseinrichtungen, die das Zusammenarbeiten und das Funktionieren im betrieblichen Geschehen fördern und in gewissem Grad erst möglich machen. Dazu zählen folgende Einrichtungen, die in der Motorenfabrik Oberursel teilweise zurückgehen bis in deren Gründungszeit:

- Vom Arbeiterrat zum Betriebsrat
- Betriebsfeuerwehr und Brandschutz
- Der Kreis der Jubilare
- Der Betriebssport
- Von der Werkskantine zum Betriebsrestaurant
- Die Berufsausbildung
- Arbeitsschutz, Gesundheit und Sicherheit

Zahlreiche Klein-Exponate, Dokumente, Fotografien und Memorabilien informieren über das alltägliche Leben in der Fabrik und in wechselnden Präsentation zu den genannten Einrichtungen.

Tag der offenen Tür 27.6. 1998 – Ausstellungsbereich Mitarbeiterfeier am Nachmittag davor Turbolöscher mit zwei Larzac-Strahltriebwerken

Die viermotorige Fw 200 CONDOR - Ihrer Zeit voraus, vom Krieg verschluckt

Die Flugmotoren SAM 322 und Bramo 323 - Welchen Bezug haben sie zum Werk Oberursel?

Neben den Entwicklungsarbeiten zu den Dz700-Flugmotoren produzierte die KHD AG in ihrem Werk in Hamburg in Auftragsfertigung bis Ende **1940** Flugmotoren von Typ Bramo 323. Diese Motoren wurden unter anderem in dem viermotorige Langstreckenverkehrsflugzeug Focke-Wulf Fw 200 eingesetzt. Die von der Lufthansa direkt

Das Öl stammt aus der 1942 im Trondheimfjord notgewasserten und 1999 geborgenen Fw 200-C3

nach dessen Erstflug im September **1937** bestellten Flugzeuge wurden nach Kriegsbeginn zu Regierungsflugzeugen und zu Militär-Transportern umgerüstet.

Für den militärischen Einsatz als Seeaufklärer und Fernbomber wurde die als Verkehrsflugzeug konzipierte Fw200 umkonstruiert und so bis Anfang **1944** weiter produziert. Von insgesamt etwa 275 gebauten Fw200 überlebten nur wenige Exemplare das Kriegsende im Mai 1945, bis 1947 verschwand die Fw 200 Condor von der Luftfahrtbühne, Stück für Stück landete in der Schrottpresse.

Ausgehend von Wrackbergungen wird derzeit, unter Leitung des Deutschen Technikmuseum Berlin bei der Deutschen Lufthansa in Hamburg und bei Airbus in Bremen eine Fw 200 Condor rekonstruiert, um dieses Flug-

zeug als weltweit einzigartiges technisches Denkmal zu erhalten. Rolls-Royce Deutschland hat dazu das Arbeitspaket "Bramo 323 Flugmotoren" übernommen. Die Wrackmotoren, die jahrzehntelang im Meerwasser lagen, waren jedoch nicht mehr zu retten. Von Sammlern und anderen Museen konnten jedoch glücklicherweise drei halbwegs komplette Motoren beschafft und wiederhergerichtet werden. Aus Original-Ersatzteilen und nachgefertigten Teilen konnte der vierte Motor aufgebaut werden. Die Restaurierungsarbeiten haben Dahlewitzer Auszubildende und Ehrenamtliche des GKMO durchgeführt.

In den Stammbaum des Bramo 323-Motors fällt auch der Neunzylinder-Sternmotor SAM 322 der früheren Siemens Apparate und Maschinen GmbH (SAM). Ein solcher Motor wurde im Oktober 2000 bei Erdarbeiten im Werk Oberursel nahe den ehemaligen Motorenprüfständen gefunden. Der 1933 aus Siemens & Halske in die SAM ausgegliederte Flugmotorenbau wurde bereits 1936 in die dazu gegründete Brandenburgische Motorenwerke GmbH (Bramo) überführt, welche wiederum 1939 als BMW-Flugmotorenwerke Brandenburg

GmbH unter das Dach von BMW ging. Wie und wann der Motor

SAM 322, der als Vorentwicklung für den späteren Bramo 323 betrachtet werden kann, nach Oberursel gelangte, ist nicht bekannt. Möglicherweise wurden auf den hiesigen Motorenprüfstanden Untersuchungen durchgeführt. Den für Oberursel artfremden Bodenfund-Motor haben wir an das Deutsche Technikmuseum Berlin abgegeben.

Ein Blickfang sind die beiden im Außenbereich des Museums aufgestellten Luftfahrzeuge, die Hülle des leichten Jagdbombers und Aufklärers Fiat G-91 R/3 sowie ein fast noch funktionsfähiger Transporthubschrauber Bell UH-1D. Diese Objekte stehen für den Gedanken, nicht nur die in Oberursel gefertigten Triebwerke zu präsentieren, sondern auch deren Verwendungszweck in ihrem Luftfahrzeug.

Der Außenbereich wird zu besonderen Anlässen für Demonstrationsläufe des Oberurseler Umlaufmotors U 0 und künftig auch für Vorführungen des GNOM-Standmotors genutzt. Ein vorhandener Walzenstuhl der Gebrüder Seck wird hier auch noch untergebracht. Weiterhin hat hier bereits eine auf Feldbahngleisen stehende Güterlore ihren Platz gefunden,und Platz für den Traum einer Oberurseler Feldbahn-Lokomotive wäre hier auch noch.

Der leichte Jagdbomber und Aufklärer Fiat G-91 R/3 - Mit unserem Triebwerk Orpheus

Der Mitte der **1950**er Jahre entwickelte leichte Jagdbomber und Aufklärer Fiat G-91 R/3 war ein einstrahliger und einsitziger Tiefdecker in Ganzmetallbauweise, ausgelegt für den Schallgrenzbereich, das über eine Druckkabine und einen Schleudersitz verfügte. Er wurde von einem kartuschengestarteten Strahltriebwerk Orpheus 803 D-11 angetrieben und konnte auch von unbefestigten Plätzen aus operieren. Die Fahrwerke waren hydraulisch ein- und ausfahrbar. Neun Rumpfbehälter fassten zusammen 1.600 Liter Kraftstoff, die optionalen Zusatztanks unter den Tragflächen zusätzliche 520 bzw. 1.040 Liter. In der Bugspitze konnten drei Aufklärungskameras untergebracht werden. An der Rumpfvorderseiten war beidseits je eine 30mm Kanone starr eingebaut. Mitte der **1960**er Jahre wurden TACAN- Navigationsgeräte optional anstelle der rechten Bordkanone eingebaut, womit das Flugzeug blindflugfähig wurde. Zum Schutz des Piloten und der Bordanlagen war die G91 von unten mit Stahlplatten gepanzert. An vier Flügelstationen konnten Abwurfwaffen, Raketen oder Treibstoff-Zusatztanks mitgenommen werden.

Das Ausstellungsflugzeug wurde 1963 bei der damaligen Firma Dornier in Oberpfaffenhofen hergestellt und dann bis 1982 bei der Waffenschule 50 der Bundes-Luftwaffe in Erding und Fürstenfeldbruck als 31+99 eingesetzt, anschließend bis 1992

als 99+08 beim Condor Flugdienst. Sein letzter Flug führte am 2. Oktober **1992** auf den Fliegerhorst in Faßberg, wo es stillgelegt wurde. Das Werksmuseum konnte dieses Flugzeug im Mai **2007** erwerben und nach aufwendigen Restaurierungsarbeiten zum Tag der offenen Tür am 31. August **2008** erstmals der Öffentlichkeit vorstellen.

Technische Daten:

Antrieb: Ein Orpheus 803 D-11; Schub 22.240 Newton lbs)

Höchstgeschwindigkeit 1075 km/h (Mach 0,88) in Bodennähe, 1086 km/h (Mach 0,91) in 1500 m Höhe

Marschgeschwindigkeit 850 km/h Dienstgipfelhöhe 13.100 m Überführungsreichweite 1.800 km

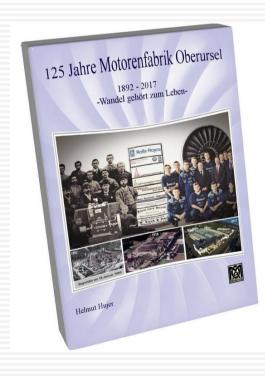
Der Transporthubschrauber Bell UH-1D - Mit unserem Triebwerk T53-L-13

Der UH-1 ist ein leichter, von Bell Helicopter Ende der 1950er Jahre für die US-Army entwickelter Mehrzweckhubschrauber, der erste turbinengetriebene Helikopter der US-Streitkräfte. Kein anderer Hubschraubertyp ist je in so großer Anzahl gebaut worden, weltweit über 16.000 Stück. Von den 352 von Dornier für die Bundeswehr und den Bundesgrenzschutz in Lizenz produzierten Exemplaren sind noch immer einige im Einsatz, so lange wie kein anderes Luftfahrzeugsystem bisher in Deutschland. Deren Antrieb – das Wellenleistungstriebwerk Lycoming T53 – wurde hier im Werk Oberursel der Klöckner-Humboldt-Deutz AG in Lizenz produziert, bis 1972 insgesamt 520 Stück.

Technische Daten	
Triebwerk:	ein Avco Lycoming T53-L-13
Triebwerksleistung:	1.044 kW / 1.420 <u>WPS</u>
Höchstgeschwindig- keit:	220 km/h
Reisegeschwindigkeit:	165 km/h
Reichweite:	ca. 500 km
Flughöhe:	4.145 m
Leergewicht:	2.140 kg
Abfluggewicht:	4.310 kg
Piloten: 1-2	Passagiere: max. 12
Rumpflänge:	12,77 m
Gesamtlänge:	17,41 m
Rotordurchmesser:	14,63 m

Im Rahmen der technisch-logistischen Betreuung wurden in Oberursel bis **2012** insgesamt 2.416 Triebwerks-Instandsetzungen und Überholungen durchgeführt.

Unser seit 2012 am Werksmuseum präsentierter UH-1D, der von 1969 bis 2007 bei den Heeresfliegern im Einsatz war und 8.162 Flugstunden absolviert hat, erinnert an die für das Werk Oberursel wichtige Produktion und Betreuung der T53- Triebwerke.



Am Ende des Rundgangs – und vielleicht am Anfang weitergehenden Interesses?

Wir hoffen, Sie hatten einen aufschlussreichen Streifzug durch die Geschichte der MO.

Wer mehr über diesen interessanten Industriestandortes erfahren möchte, der lese die Broschüre "125 Jahre Motorenfabrik Oberursel – Mit Tradition in die Zukunft" (GKMO 2017; als PDF auf der Webseite des GKMO oder als Broschüre im Werksmuseum erhältlich).
Und wer noch mehr Details wissen möchte, dem sei das Buch

125 Jahre Motorenfabrik Oberursel - 1892 bis 2017 Wandel gehört zum Leben

empfohlen. Die weit über 125 Jahre währende, wechselvolle Industriegeschichte beschreibt Helmut Hujer, der von 1961 an über fünfzig Jahre in diesem Werk tätig war. Auf 896 reich bebilderten Seiten im Format A4 wird nicht nur ein Kapitel der vielfältigen, aber weitgehend schon wieder verblassten Industriegeschichte in Oberursel und in unserer Region lebendig, auch die für die Entstehung und Entwicklung dieser Industriebetriebe bedeutenden Entwicklungen im regionalen Umfeld werden betrachtet. Breiten Raum nehmen auch die Entwicklung der sozialen und der technischen Infrastruktur in der Motorenfabrik ein. Das Buch kann beim Geschichtskreis Motorenfabrik Oberursel im Werksmuseum Motorenfabrik Oberursel eingesehen und erworben werden (Schutzgebühr 50 €), ebenso im Vortaunusmuseum in Oberursel.

Das Buch kann als Druckwerk und/oder als E-Buch direkt beim Autor bestellt werden: Helmut Hujer, | Mobil: 0170 4375 178 | Email: hujer.helmut@t-online.de

Geschichtskreis Motorenfabrik Oberursel e.V.

Das Sammeln, Bewahren, Erforschen, Ausstellen und Vermitteln von Zeugnissen der Industriegeschichte der Motorenfabrik Oberursel und all ihrer Folgefirmen sind die Aufgaben des "Geschichtskreis Motorenfabrik Oberursel".

Unsere Hauptaktivitäten sind:

- Betreiben des Werksmuseums: Im Museum kann die Geschichte des Standorts anhand der hier entwickelten und gebauten Produkte nachempfunden werden
- Reparatur und Restaurierung von Exponaten f
 ür das Werksmuseum
- Erforschung, Beschreibung und Vermittlung der Werksgeschichte
- Durchführung von Veranstaltungen: Anlaß bezogene Veranstaltungen sowie die regelmäßigen Stammtische mit einem Kurzvortrag zu einem Thema aus der Geschichte, der Gegenwart, oder einem Blick in die Zukunft des Standortes. Anschließend Gedankenaustausch beim geselligen Beisammensein im Werksmuseum.
- Beteiligung an relevanten Aktivitäten anderer Veranstalter im lokalen Umfeld: z.B. Vorträge, Tage der Industriekultur Rhein-Main, etc.

Unsere Mitglieder sind überwiegend ehemalige und aktive Beschäftigte dieses Werkes. Aber nicht nur; auch Oberurseler Industriegeschichte Interessierte gehören zu den Mitgliedern.

Zu unseren Stammtischen sind auch angemeldete Gäste willkommen.

Nähere Informationen:

Email: Info@gkmo.net

Webseite: http://www.gkmo.net

Impressum:

Titel:

Museumsführer zum Werksmuseum Motorenfabrik Oberursel – Vom Stationär-Motor zum Turbofan-Triebwerk

64 Seiten, farbig, Softcover

Autor und Gesamtgestaltung:

Günter Hujer, Berlin

Texte:

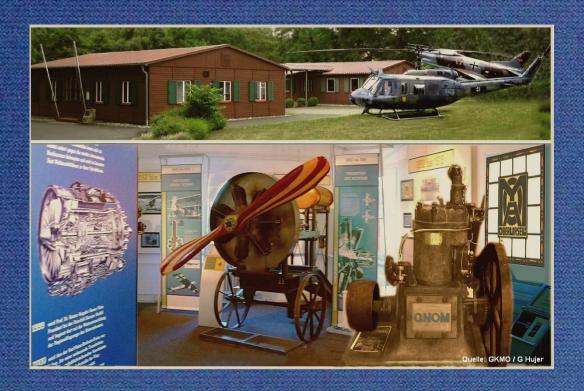
Helmut Hujer, Usingen und Günter Hujer, Berlin

Herausgeber:

Geschichtskreis Motorenfabrik Oberursel e. V., Willy-Seck-Straße 1, 61440 Oberursel

Fotos- und Bilder:

Aus der Sammlung des GKMO e.V. und der Sammlung des Autors (teilweise zu Fotomontagen verarbeitet und verfremdet)


Webseite: www.gkmo.net | Email: Info@gkmo.net

Ausgabe 1.35 | 6.4.2023

© 2023 beim Autor – Alle Rechte vorbehalten.

Auch der auszugsweise Nachdruck, die Vervielfältigung, Mikroverfilmung, Übersetzung und die Einspeicherung und Verarbeitung in elektronischen Medien erfordern die vorherige schriftliche Genehmigung durch den Autor.

Sollte der Inhalt, die Aufmachung oder die Kennzeichnungen von Bildern fremde Rechte Dritter oder gesetzliche Bestimmungen verletzen, so bitten wir um eine entsprechende Nachricht ohne Kostennote. Wir garantieren, dass die zu Recht beanstandeten Passagen unverzüglich entfernt werden, ohne dass vom Anspruchsteller die Einschaltung eines Rechtsbeistandes erforderlich ist. Dennoch ohne vorherige Kontaktaufnahme ausgelöste Kosten werden wir vollumfänglich zurückweisen.

Werksmuseum Motorenfabrik Oberursel

Prof. Günter-Kappler-Haus im Werk Oberursel der Rolls-Royce Deutschland Ltd & Co KG Willy-Seck-Straße 1, 61440 Oberursel

Normalerweise geöffnet von Januar bis November an jedem letzten Freitag im Monat von 15.00 bis 18.00 Uhr, außer an Feiertagen bzw. Brückentagen.

Bitte beachten sie die Besucherordnung ("Hinweise für Besucher" auf der Webseite gkmo.net)

Kostenbeitrag: 2,50 € pro Person, Spenden willkommen!

Während des Museumsbesuch können auch Publikationen des GKMO erworben werden.

Kontakt:

Info@gkmo.net oder Vorstand@gkmo.net

